Tm:YAG ceramic derived multimaterial fiber with high gain per unit length for 2 µm laser applications

Opt Lett. 2020 Mar 1;45(5):1047-1050. doi: 10.1364/OL.386005.

Abstract

In this work, Tm:YAG (Tm:${{\rm Y}_3}{{\rm Al}_5}{{\rm O}_{12}}$Y3Al5O12) ceramic-derived multimaterial fiber was fabricated by using the molten core method, which has a high gain per unit length of 2.7 dB/cm at 1950 nm. To our knowledge, this is the highest gain per unit length at 2 µm band in similar Tm:YAG-derived multimaterial fibers. A distributed Bragg reflector (DBR) fiber laser was built based on a 10-cm-long as-drawn fiber. The achieved 1950 nm laser, which has a maximum output power of $\sim{240}\;{\rm mW}$∼240mW and a slope efficiency of 16.5%, was pumped by a self-developed 1610 nm fiber laser. What is more, an all-fiber-integrated passively mode-locked fiber laser based on the 10-cm-long as-drawn fiber was realized. The mode-locked pulses operate at 1950 nm with duration of $\sim{380}\;{\rm ps}$∼380ps, and the repetition rate is 26.45 MHz. The results described here indicate that the Tm:YAG ceramic-derived multimaterial fiber with high gain per unit length has promising applications in 2 µm all-fiber fiber lasers.