Format

Send to

Choose Destination
Lab Chip. 2020 Mar 17;20(6):1066-1071. doi: 10.1039/d0lc00039f.

A microfluidic approach to micromembrane synthesis for complex release profiles of nanocarriers.

Author information

1
Département de Chimie, Université Laval, 1045 avenue de la médecine, Québec, G1V 0A6, Canada. jesse.greener@chm.ulaval.ca.
2
Department of Inorganic Chemistry - Functional Materials, Faculty of Chemistry, University of Vienna, Währinger Straße 42, 1090 Vienna, Austria. freddy.kleitz@univie.ac.at.
3
Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada and Faculté de Pharmacie, Université Laval, Québec, QC G1V 0A6, Canada.
4
Département de Chimie, Université Laval, 1045 avenue de la médecine, Québec, G1V 0A6, Canada. jesse.greener@chm.ulaval.ca and Médecine Régénératrice, Centre de Recherche du CHU de Québec-Université Laval, Québec, QC G1J 1Z4, Canada.

Abstract

Physically crosslinked microscale biomembranes synthesized from pure chitosan are designed and demonstrated for pH-triggered release of embedded functionalized mesoporous silica nanoparticles. Nanoparticle-loaded membranes are formed in a microfluidic channel at the junction between accurately controlled co-flowing streams to achieve highly tuneable membrane properties. After formation, the loaded membranes remain stable until contact with physiological acidic conditions, resulting in controlled nanoparticle release. Furthermore, nanoparticle-loaded membranes with complex layered architectures are synthesized using different flow schemes, thus enabling customized nanoparticle release profiles. These novel materials are well-suited for integration within small medical devices as well as off-chip applications.

PMID:
32100795
DOI:
10.1039/d0lc00039f

Supplemental Content

Full text links

Icon for Royal Society of Chemistry
Loading ...
Support Center