Send to

Choose Destination
See comment in PubMed Commons below
J Appl Physiol (1985). 1988 Nov;65(5):2046-50.

Muscle glycogen utilization during shivering thermogenesis in humans.

Author information

Defence and Civil Institute of Environmental Medicine, Downsview, Ontario, Canada.


The purpose of the present study was to clarify the importance of skeletal muscle glycogen as a fuel for shivering thermogenesis in humans during cold-water immersion. Fourteen seminude subjects were immersed to the shoulders in 18 degrees C water for 90 min or until rectal temperature (Tre) decreased to 35.5 degrees C. Biopsies from the vastus lateralis muscle and venous blood samples were obtained before and immediately after the immersion. Metabolic rate increased during the immersion to 3.5 +/- 0.3 (SE) times resting values, whereas Tre decreased by 0.9 degrees C to approximately 35.8 degrees C at the end of the immersion. Intramuscular glycogen concentration in the vastus lateralis decreased from 410 +/- 15 to 332 +/- 18 mmol glucose/kg dry muscle, with each subject showing a decrease (P less than 0.001). Plasma volume decreased (P less than 0.001) markedly during the immersion (-24 +/- 1%). After correcting for this decrease, blood lactate and plasma glycerol levels increased by 60 (P less than 0.05) and 38% (P less than 0.01), respectively, whereas plasma glucose levels were reduced by 20% after the immersion (P less than 0.001). The mean expiratory exchange ratio showed a biphasic pattern, increasing initially during the first 30 min of the immersion from 0.80 +/- 0.06 to 0.85 +/- 0.05 (P less than 0.01) and decreasing thereafter toward basal values. The results demonstrate clearly that intramuscular glycogen reserves are used as a metabolic substrate to fuel intensive thermogenic shivering activity of human skeletal muscle.

[Indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for HighWire
    Loading ...
    Support Center