Format

Send to

Choose Destination
Chemosphere. 2020 Feb 7;250:126124. doi: 10.1016/j.chemosphere.2020.126124. [Epub ahead of print]

Application of a human mesoderm tissue elongation system in vitro derived from human induced pluripotent stem cells to risk assessment for teratogenic chemicals.

Author information

1
Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Department of Cell Biology, Nagoya City University, Graduate School of Medical Sciences, 1 Kawasumi, Mizuho-cho, Mizuho-ku, Nagoya, Aichi, 467-8601, Japan.
2
Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan; Nara Institute of Science and Technology, Division of Biological Science, Stem Cell Technologies Lab, Takayama-cho, Ikoma 8916-5, Nara, 630-0192, Japan.
3
Department of Cell Biology and Anatomy, Fujita Health University, 1-98 Dengakugakubo, Kutsukake-cho, Toyoake, Aichi, 470-1192, Japan.
4
Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, 1-1-1 Higashi, Tsukuba, Ibaraki, 305-8566, Japan.
5
Department of Life Sciences (Biology), Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
6
Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan.
7
Department of Occupational and Environmental Health, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, Aichi, 466-8550, Japan; Voluntary Body for International Health Care in Universities, Nagoya, Japan. Electronic address: katomasa@med.nagoya-u.ac.jp.

Abstract

Toxic compounds from the mother's diet and medication in addition to genetic factors and infection during pregnancy remain risks for various congenital disorders and misbirth. To ensure the safety of food and drugs for pregnant women, establishment of an in vitro system that morphologically resembles human tissues has been long desired. In this study, we focused on dorsal mesoderm elongation, one of the critical early development events for trunk formation, and we established in vitro autonomous elongating tissues from human induced pluripotent stem cells (hiPSCs). This artificial tissue elongation is regulated by MYOSIN II and FGF signaling, and is diminished by methylmercury or retinoic acid (RA), similar to in vivo human developmental disabilities. Moreover, our method for differentiation of hiPSCs requires only a short culture period, and the elongation is cell number-independent. Therefore, our in vitro human tissue elongation system is a potential tool for risk assessment assays for identification of teratogenic chemicals via human tissue morphogenesis.

KEYWORDS:

Dysmorphic disorders; Human pluripotent stem cells; Risk assessment assay; Three-dimensional tissue elongation; Transplacental teratogen

Conflict of interest statement

Declaration of competing interest All authors have no conflicts of interest with the contents of this article.

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center