Decoding biomass recalcitrance: Dispersion of ionic liquid in aqueous solution and efficient extraction of lignans with microwave magnetic field

PLoS One. 2020 Feb 21;15(2):e0226901. doi: 10.1371/journal.pone.0226901. eCollection 2020.

Abstract

Alkaline ionic liquid aqueous solutions were used to extract biphenyl cyclooctene lignans derivatives, and hydrolyze to the free-state biphenyl cyclooctene lignans simultaneously from Schisandra chinensis by microwave-assisted heating. The hydrogen bonds formatted between ionic liquid and water molecular attacks the amorphous region of cellulose. Selective heating by microwave produce the more polar regions, which results in swelling and fragmentation of raw materials near the hot spots. Therefore, ionic liquid-microwave-assisted extraction method of free-state biphenyl cyclooctene lignans was set up. The solid residue after treatment was characterized by infrared spectroscopy and scanning electron microscopy, which showed that cellulose, hemicellulose, and lignin were removed partially. The water content of ionic liquid solution affected its viscosity and diffusivity, and in turns the extraction efficiency of lignans. The IL solutions with different mole fractions of IL were detected by FTIR and Raman spectroscopy, the result shows that IL solutions with higher water contents (>0.6) won't form clusters. The optimum hydrolysis conditions were 0.2 g of ionic liquid catalyst per 5.0 g of S. chinensis fruits, a microwave irradiation power of 600 W, and heating time of 12 min, which gave a yield of free-state biphenyl cyclooctene lignans of 4.12±0.37 mg g-1. Besides, a hydrolysis mechanism of ester-bond biphenyl cyclooctene lignans and decreasing "biomass recalcitrance effect" by ionic liquid microwave-assisted method was proposed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Biphenyl Compounds / isolation & purification*
  • Cyclooctanes / isolation & purification*
  • Fruit / chemistry*
  • Hydrolysis
  • Ionic Liquids / chemistry
  • Lignans / isolation & purification*
  • Magnetic Fields
  • Microwaves
  • Plant Extracts / chemistry*
  • Schisandra / metabolism*
  • Water / chemistry

Substances

  • Biphenyl Compounds
  • Cyclooctanes
  • Ionic Liquids
  • Lignans
  • Plant Extracts
  • Water

Grants and funding

The authors thank the National Natural Science Foundation of China (31890773), the Fundamental Research Funds for the Central Universities (2572019BB02), the postdoctoral scientific research developmental fund of Heilongjiang Province in 2016 (LBH-Q16001), and the Research Start-up Funding of Introduce Talents in Northeast Forestry University (YQ2015-02). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.