Nitrogen and Sulfur-Codoped Porous Carbon Nanospheres with Hierarchical Micromesoporous Structures and an Ultralarge Pore Volume for High-Performance Supercapacitors

ACS Appl Mater Interfaces. 2020 Feb 19;12(7):8225-8232. doi: 10.1021/acsami.9b20473. Epub 2020 Feb 5.

Abstract

The carbon nanostructure with heteroatom doping having well-designed porosity and a large pore volume plays a vital role in high-performance supercapacitors. Herein, we synthesize hierarchical nitrogen and sulfur-codoped micromesoporous carbon nanospheres (N,S-HPCNSs) with an ultralarge pore volume of 3.684 cm3 g-1. The ultralarge pore volume in the N,S-HPCNSs can achieve fast charge storage and high electrochemical utilization due to the rapid mass transport. As a result, N,S-HPCNSs exhibit specific capacitances of 309.4 F g-1 at 0.5 A g-1 and 232.0 F g-1 at 50 A g-1 in a 1 M H2SO4 electrolyte, suggesting a superior rate property. Moreover, the N,S-HPCNSs exhibit a splendid cycling performance after 10,000 cycles with 98.5% capacitance retention. Furthermore, a symmetric supercapacitor reaches an excellent energy density of 27.8 W h kg-1 under 180.0 W kg-1 in a 1 M Na2SO4 electrolyte. The remarkable electrochemical properties of N,S-HPCNSs are caused by the ultralarge pore volume and hierarchical micromesoporous structures of the carbon NSs, which provide a significant way for designing energy storage systems.

Keywords: high rate; micromesopore; nitrogen and sulfur codoping; supercapacitor; ultralarge pore volume.