Format

Send to

Choose Destination
PLoS One. 2020 Jan 13;15(1):e0227492. doi: 10.1371/journal.pone.0227492. eCollection 2020.

Application of computerized 3D-CT texture analysis of pancreas for the assessment of patients with diabetes.

Author information

1
Department of Radiology, SMG-SNU Boramae Medical Center, Seoul, Korea.
2
Department of Radiology, Seoul National University Hospital, Seoul, Korea.
3
Institute of Radiation Medicine, Seoul National University College of Medicine, Seoul, Korea.
4
Department of Radiology, Soonchunhyang University College of Medicine, Soonchunhyang University Bucheon Hospital, Bucheon, Korea.

Abstract

OBJECTIVE:

To evaluate the role of computerized 3D CT texture analysis of the pancreas as quantitative parameters for assessing diabetes.

METHODS:

Among 2,493 patients with diabetes, 39 with type 2 diabetes (T2D) and 12 with type 1 diabetes (T1D) who underwent CT using two selected CT scanners, were enrolled. We compared these patients with age-, body mass index- (BMI), and CT scanner-matched normal subjects. Computerized texture analysis for entire pancreas was performed by extracting 17 variable features. A multivariate logistic regression analysis was performed to identify the predictive factors for diabetes. A receiver operator characteristic (ROC) curve was constructed to determine the optimal cut off values for statistically significant variables.

RESULTS:

In diabetes, mean attenuation, standard deviation, variance, entropy, homogeneity, surface area, sphericity, discrete compactness, gray-level co-occurrence matrix (GLCM) contrast, and GLCM entropy showed significant differences (P < .05). Multivariate analysis revealed that a higher variance (adjusted OR, 1.002; P = .005), sphericity (adjusted OR, 1.649×104; P = .048), GLCM entropy (adjusted OR, 1.057×105; P = .032), and lower GLCM contrast (adjusted OR, 0.997; P < .001) were significant variables. The mean AUCs for each feature were 0.654, 0.689, 0.620, and 0.613, respectively (P < .05). In subgroup analysis, only larger surface area (adjusted OR, 1.000; P = .025) was a significant predictor for T2D.

CONCLUSIONS:

Computerized 3D CT texture analysis of the pancreas could be helpful for predicting diabetes. A higher variance, sphericity, GLCM entropy, and a lower GLCM contrast were the significant predictors for diabetes.

Conflict of interest statement

The authors have declared that no competing interests exist.

Supplemental Content

Full text links

Icon for Public Library of Science Icon for PubMed Central
Loading ...
Support Center