Format

Send to

Choose Destination
Aging (Albany NY). 2019 Dec 28;11(24):12600-12623. doi: 10.18632/aging.102590. Epub 2019 Dec 28.

Genome-wide global identification of NRF2 binding sites in A549 non-small cell lung cancer cells by ChIP-Seq reveals NRF2 regulation of genes involved in focal adhesion pathways.

Author information

1
Department of Biochemistry and Department of Thoracic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310003, PR China.
2
Department of Pharmacology and Cancer Institute of the Second Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang University, Hangzhou 310058, PR China.

Abstract

Nuclear factor erythroid-derived-2-like 2(NRF2) regulates its downstream genes through binding with antioxidant responsive elements in their promoter regions. Hyperactivation of NRF2 results in oncogenesis and drug resistance in various cancers including non-small cell lung cancer (NSCLC). However, identification of the genes and pathways regulated by NRF2 in NSCLC warrants further investigation. We investigated the global NRF2 genomic binding sites using the high-throughput ChIP-Seq technique in KEAP1 (Kelch-like ECH-associated protein 1)-mutated A549 (NSCLC) cells. We next carried out an integrated analysis of the ChIP-Seq data with transcriptomic data from A549 cells with NRF2-knockdown and RNA-Seq data from TCGA patients with altered KEAP1 to identify downstream and clinically-correlated genes respectively. Furthermore, we applied transcription factor enrichment analysis, generated a protein-protein interaction network, and used kinase enrichment analysis. Moreover, functional annotation of NRF2 binding sites using DAVID v7 identified the genes involved in focal adhesion. Putative focal adhesion genes regulated by NRF2 were validated using qRT-PCR. Further, we selected one novel conserved focal adhesion gene regulated by NRF2-LAMC1 (laminin subunit gamma 1) and validated it using a reporter assay. Overall, the identification of NRF2 target genes paves the way for identifying the molecular mechanism of NRF2 signaling in NSCLC development and therapy. Moreover, our data highlight the complexity of the pathways regulated by NRF2 in lung tumorigenesis.

KEYWORDS:

ChIP-seq; focal adhesion; microarray; non-small-cell lung cancer; nuclear factor erythroid-derived-2-like 2

Supplemental Content

Full text links

Icon for Impact Journals, LLC Icon for PubMed Central
Loading ...
Support Center