Hepatotoxicity and the role of the gut-liver axis in rats after oral administration of titanium dioxide nanoparticles

Part Fibre Toxicol. 2019 Dec 27;16(1):48. doi: 10.1186/s12989-019-0332-2.

Abstract

Background: Due to its excellent physicochemical properties and wide applications in consumer goods, titanium dioxide nanoparticles (TiO2 NPs) have been increasingly exposed to the environment and the public. However, the health effects of oral exposure of TiO2 NPs are still controversial. This study aimed to illustrate the hepatotoxicity induced by TiO2 NPs and the underlying mechanisms. Rats were administered with TiO2 NPs (29 nm) orally at exposure doses of 0, 2, 10, 50 mg/kg daily for 90 days. Changes in the gut microbiota and hepatic metabolomics were analyzed to explore the role of the gut-liver axis in the hepatotoxicity induced by TiO2 NPs.

Results: TiO2 NPs caused slight hepatotoxicity, including clear mitochondrial swelling, after subchronic oral exposure at 50 mg/kg. Liver metabolomics analysis showed that 29 metabolites and two metabolic pathways changed significantly in exposed rats. Glutamate, glutamine, and glutathione were the key metabolites leading the generation of energy-related metabolic disorders and imbalance of oxidation/antioxidation. 16S rDNA sequencing analysis showed that the diversity of gut microbiota in rats increased in a dose-dependent manner. The abundance of Lactobacillus_reuteri increased and the abundance of Romboutsia decreased significantly in feces of TiO2 NPs-exposed rats, leading to changes of metabolic function of gut microbiota. Lipopolysaccharides (LPS) produced by gut microbiota increased significantly, which may be a key factor in the subsequent liver effects.

Conclusions: TiO2 NPs could induce slight hepatotoxicity at dose of 50 mg/kg after long-term oral exposure. The indirect pathway of the gut-liver axis, linking liver metabolism and gut microbiota, played an important role in the underlying mechanisms.

Keywords: Gut microbiota; Gut-liver axis; Hepatotoxicity; Nanomaterials; Titanium dioxide.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Administration, Oral
  • Animals
  • Chemical and Drug Induced Liver Injury / etiology*
  • Chemical and Drug Induced Liver Injury / immunology
  • Chemical and Drug Induced Liver Injury / microbiology
  • Dose-Response Relationship, Drug
  • Gastrointestinal Microbiome / drug effects*
  • Liver / drug effects*
  • Liver / immunology
  • Liver / metabolism
  • Metabolic Networks and Pathways / drug effects*
  • Nanoparticles / toxicity*
  • Oxidative Stress / drug effects
  • Particle Size
  • Rats
  • Rats, Sprague-Dawley
  • Surface Properties
  • Titanium / toxicity*

Substances

  • titanium dioxide
  • Titanium