Format

Send to

Choose Destination
Sci Rep. 2019 Dec 20;9(1):19527. doi: 10.1038/s41598-019-55763-x.

Minimal Linear Networks for Magnetic Resonance Image Reconstruction.

Author information

1
Faculty of Psychology and Neuroscience and Maastricht Brain Imaging Center, Maastricht University, Maastricht, The Netherlands. giladliberman@gmail.com.
2
Faculty of Psychology and Neuroscience and Maastricht Brain Imaging Center, Maastricht University, Maastricht, The Netherlands.

Abstract

Modern sequences for Magnetic Resonance Imaging (MRI) trade off scan time with computational challenges, resulting in ill-posed inverse problems and the requirement to account for more elaborated signal models. Various deep learning techniques have shown potential for image reconstruction from reduced data, outperforming compressed sensing, dictionary learning and other advanced techniques based on regularization, by characterization of the image manifold. In this work we suggest a framework for reducing a "neural" network to the bare minimum required by the MR physics, reducing the network depth and removing all non-linearities. The networks performed well both on benchmark simulated data and on arterial spin labeling perfusion imaging, showing clear images while preserving sensitivity to the minute signal changes. The results indicate that the deep learning framework plays a major role in MR image reconstruction, and suggest a concrete approach for probing into the contribution of additional elements.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center