3D Printed Hydrogel Multiassay Platforms for Robust Generation of Engineered Contractile Tissues

Biomacromolecules. 2020 Feb 10;21(2):356-365. doi: 10.1021/acs.biomac.9b01274. Epub 2019 Dec 20.

Abstract

We present a method for reproducible manufacture of multiassay platforms with tunable mechanical properties for muscle tissue strip analysis. The platforms result from stereolithographic 3D printing of low protein-binding poly(ethylene glycol) diacrylate (PEGDA) hydrogels. Contractile microtissues have previously been engineered by immobilizing suspended cells in a confined hydrogel matrix with embedded anchoring cantilevers to facilitate muscle tissue strip formation. The 3D shape and mechanical properties of the confinement and the embedded cantilevers are critical for the tissue robustness. High-resolution 3D printing of PEGDA hydrogels offers full design freedom to engineer cantilever stiffness, while minimizing unwanted cell attachment. We demonstrate the applicability by generating suspended muscle tissue strips from C2C12 mouse myoblasts in a compliant fibrin-based hydrogel matrix. The full design freedom allows for new platform geometries that reduce local stress in the matrix and tissue, thus, reducing the risk of tissue fracture.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Biomechanical Phenomena
  • Computer-Aided Design
  • Cryopreservation / methods
  • Hydrogels / chemistry*
  • Mice
  • Muscles / cytology
  • Muscles / physiology
  • Myoblasts / cytology
  • Polyethylene Glycols / chemistry
  • Printing, Three-Dimensional* / instrumentation
  • Tissue Engineering / instrumentation*
  • Tissue Engineering / methods

Substances

  • Hydrogels
  • poly(ethylene glycol)diacrylate
  • Polyethylene Glycols