Send to

Choose Destination
Anal Chem. 2020 Jan 7. doi: 10.1021/acs.analchem.9b04334. [Epub ahead of print]

High-Throughput Synthesis and Analysis of Intact Glycoproteins Using SAMDI-MS.

Author information

Feinberg School of Medicine , Northwestern University , Chicago , Illinois 60611 , United States.
Department of Microbiology, Nancy E. and Peter C. Meinig School of Biomedical Engineering, Biochemistry, Molecular and Cell Biology, and Robert Frederick Smith School of Chemical and Biomolecular Engineering , Cornell University , Ithaca , New York 14853 , United States.


High-throughput quantification of the post-translational modification of many individual protein samples is challenging with current label-based methods. This paper demonstrates an efficient method that addresses this gap by combining Escherichia coli-based cell-free protein synthesis (CFPS) and self-assembled monolayers for matrix-assisted laser desorption/ionization mass spectrometry (SAMDI-MS) to analyze intact proteins. This high-throughput approach begins with polyhistidine-tagged protein substrates expressed from linear DNA templates by CFPS. Here, we synthesized an 87-member library of the E. coli Immunity Protein 7 (Im7) containing an acceptor sequence optimized for glycosylation by the Actinobacillus pleuropneumoniae N-glycosyltransferase (NGT) at every possible position along the protein backbone. These protein substrates were individually treated with NGT and then selectively immobilized to self-assembled monolayers presenting nickel-nitrilotriacetic acid (Ni-NTA) complexes before final analysis by SAMDI-MS to quantify the conversion of substrate to glycoprotein. This method offers new opportunities for rapid synthesis and quantitative evaluation of intact glycoproteins.

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center