Human platelets attenuate oxidant injury in isolated rabbit lungs

J Appl Physiol (1985). 1988 Sep;65(3):1258-66. doi: 10.1152/jappl.1988.65.3.1258.

Abstract

Because platelets contain active antioxidant systems, the capacity of platelets to attenuate oxidant lung injury was investigated. Purine and xanthine oxidase were infused into isolated perfused rabbit lungs (IPL) to generate H2O2, thereby causing increased membrane permeability edema. The coinfusion of washed human platelets (1.20 +/- 0.07 x 10(10) cells) attenuated the degree of edema formation as measured by lung weight gain and lung lavage albumin concentration. Electron microscopy of lung preparations demonstrated platelet adherence to capillary endothelial luminal surfaces of oxidant-injured lungs, but there was no evidence of vascular plugging with platelet macroaggregates. The platelet glutathione redox cycle or platelet catalase were inhibited before infusion of platelets into the IPL with purine and xanthine oxidase. Inhibition of the glutathione redox cycle with 1,3-bis(2-chloroethyl)-1-nitrosourea, 1-chloro-2,4-dinitrobenzene, or buthionine sulfoximine prevented platelet attenuation of lung injury. Inactivation of platelet catalase with 3-amino-1,2,4-triazole, however, did not significantly reduce the platelet-induced lung protection. We conclude that the platelet glutathione redox cycle plays a major role in reducing enzymatically generated toxic O2 metabolites and attenuating lung injury.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Blood Platelets / metabolism*
  • Blood Pressure / drug effects
  • Glutathione / metabolism
  • Humans
  • In Vitro Techniques
  • Lung / drug effects
  • Lung / metabolism*
  • Oxidation-Reduction
  • Pulmonary Edema / blood
  • Pulmonary Edema / etiology
  • Purines / pharmacology
  • Rabbits
  • Respiratory Distress Syndrome / blood
  • Respiratory Distress Syndrome / etiology
  • Xanthine Oxidase / pharmacology

Substances

  • Purines
  • Xanthine Oxidase
  • Glutathione