Format

Send to

Choose Destination
EJNMMI Res. 2019 Nov 21;9(1):98. doi: 10.1186/s13550-019-0564-z.

Multimodal image-guided surgery of HER2-positive breast cancer using [111In]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast tumor model.

Author information

1
Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands. m.m.deken@lumc.nl.
2
Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.
3
Department of Surgery, Leiden University Medical Center, Leiden, The Netherlands.
4
Department of Clinical Pharmacy and Toxicology, Leiden University Medical Center, Leiden, The Netherlands.

Abstract

BACKGROUND:

Combining modalities using dual-labeled antibodies may allow preoperative and intraoperative tumor localization and could be used in image-guided surgery to improve complete tumor resection. Trastuzumab is a monoclonal antibody against the human epidermal growth factor-2 (HER2) receptor and dual-labeled trastuzumab with both a fluorophore (IRDye800CW) and a radioactive label (111In) can be used for multimodal imaging of HER2-positive breast cancer. The aim of this study was to demonstrate the feasibility of HER2-targeted multimodal imaging using [111In]In-DTPA-trastuzumab-IRDye800CW in an orthotopic breast cancer model.

METHODS:

Trastuzumab was conjugated with p-isothiocyanatobenzyl (ITC)-diethylenetriaminepentaacetic acid (DTPA) and IRDye800CW-NHS ester and subsequently labeled with 111In. In a dose escalation study, the biodistribution of 10, 30, and 100 μg [111In]In-DTPA-trastuzumab-IRDye800CW was determined 48 h after injection in BALB/c nude mice with orthotopic high HER2-expressing tumors. Also, a biodistribution study was performed in a low HER2-expressing breast cancer model. In addition, multimodal image-guided surgery was performed in each group. Autoradiography, fluorescence microscopy, and immunohistochemically stained slices of the tumors were compared for co-localization of tumor tissue, HER2 expression, fluorescence, and radiosignal.

RESULTS:

Based on the biodistribution data, a 30 μg dose of dual-labeled trastuzumab (tumor-to-blood ratio 13 ± 2) was chosen for all subsequent studies. [111In]In-DTPA-trastuzumab-IRDye800CW specifically accumulated in orthotopic HER2-positive BT474 tumors (101 ± 7 %IA/g), whereas uptake in orthotopic low HER2-expressing MCF7 tumor was significantly lower (1.2 ± 0.2 %IA/g, p = 0.007). BT474 tumors could clearly be visualized with both micro-SPECT/CT, fluorescence imaging and subsequently, image-guided resection was performed. Immunohistochemical analyses of BT474 tumors demonstrated correspondence in fluorescence, radiosignal, and high HER2 expression.

CONCLUSIONS:

Dual-labeled trastuzumab showed specific accumulation in orthotopic HER2-positive BT474 breast tumors with micro-SPECT/CT and fluorescence imaging and enabled image-guided tumor resection. In the clinical setting, [111In]In-DTPA-trastuzumab-IRDye800CW could be valuable for preoperative detection of (metastatic) tumors by SPECT/CT imaging, and intraoperative localization by using a gamma probe and fluorescence image-guided surgery to improve radical resection of tumor tissue in patients with HER2-positive tumors.

KEYWORDS:

Fluorescence; HER2-positive breast cancer; Image-guided surgery; Multimodal imaging; [111In]In-DTPA-trastuzumab-IRDye800CW

Supplemental Content

Full text links

Icon for Springer Icon for PubMed Central
Loading ...
Support Center