Genes and proteins of strain S32 potentially involved in pectin catabolism. A: Genetic organization. Genes are symbolized by arrows; their name and ID number are given. B: Proposed metabolic pathway deduced from the predicted protein localization and from the function of homologous proteins. The extracellularly pectate lyase Pel1 generates unsaturated oligogalacturonides (u-oligoGalA) up to dimers (u-diGalA, unsaturated digalacturonide). The activity of outer membrane anchored polygalacturonases, PehA and PehB, generates saturated oligomers up to dimers (oligoGalA, oligogalacturonides; diGalA, digalacturonide). Extracellular oligomers enter the periplasm using the specific outer-membrane porin, KdgM. Short oligomers enter the cytoplasm using two specific transporters, TogMNAB and TogT. In the cytoplasm, they are further cleaved up monomers by the action of the exopolygalacturonase PehX and the oligogalacturonate lyase, Ogl. The two pathways involved in the catabolism of galacturonate (GalA) and unsaturated galacturonate (uGalA) converge to produce a common intermediate, KDG (2-keto-3-deoxygluconate) which is converted to pyruvate and glyceraldehyde 3-phosphate.