Format

Send to

Choose Destination
Ecotoxicol Environ Saf. 2019 Nov 4;188:109786. doi: 10.1016/j.ecoenv.2019.109786. [Epub ahead of print]

Comparative cyto- and genotoxicity of 900 MHz and 1800 MHz electromagnetic field radiations in root meristems of Allium cepa.

Author information

1
Department of Botany, Panjab University, Chandigarh, 160 014, India; Department of Botany, Government Degree College, Barsar, Hamirpur, 174 305, Himachal Pradesh, India.
2
Department of Botany, Panjab University, Chandigarh, 160 014, India. Electronic address: shalinderkaur@hotmail.com.
3
Department of Botany, Panjab University, Chandigarh, 160 014, India.
4
Department of Environment Studies, Panjab University, Chandigarh, 160 014, India. Electronic address: hpsingh_01@yahoo.com.
5
Department of Botany, Panjab University, Chandigarh, 160 014, India; Central University of Punjab, City Campus, Mansa Road, Bathinda, 151 001, Punjab, India.

Abstract

In the last few decades, tremendous increase in the use of wireless electronic gadgets, particularly the cell phones, has significantly enhanced the levels of electromagnetic field radiations (EMF-r) in the environment. Therefore, it is pertinent to study the effect of these radiations on biological systems including plants. We investigated comparative cytotoxic and DNA damaging effects of 900 and 1800 MHz EMF-r in Allium cepa (onion) root meristematic cells in terms of mitotic index (MI), chromosomal aberrations (CAs) and single cell gel electrophoresis (comet assay). Onion bulbs were subjected to 900 and 1800 MHz (at power densities 261 ± 8.50 mW m-2 and 332 ± 10.36 mW m-2, respectively) of EMF-r for 0.5 h, 1 h, 2 h, and 4 h. Root length declined by 13.2% and 12.3%, whereas root thickness was increased by 46.7% and 48.3% after 4 h exposure to 900 MHz and 1800 MHz, respectively. Cytogenetic studies exhibited clastogenic effect of EMF-r as depicted by increased CAs and MI. MI increased by 36% and 53% after 2 and 4 h exposure to 900 MHz EMF-r, whereas it increased by 41% and 67% in response to 1800 MHz EMF-r. Aberration index was increased by 41%-266% and 14%-257% during 0.5-4 h of exposure to 900 MHz and 1800 MHz, respectively, over the control. EMF-r exposure decreased % head DNA (DNAH) and increased % tail DNA (DNAT) and olive tail moment (OTM) at both 900 and 1800 EMF-r. In 4 h exposure treatments, head DNA (%) declined by 19% and 23% at 900 MHz and 1800 MHz, respectively. DNAT and OTM were increased by 2.3 and 3.7 fold upon exposure to 900 MHz EMF-r over that in the control, whereas 2.8 and 5.8 fold increase was observed in response to 1800 MHz EMF-r exposure for 4 h and the difference was statistically significant. The study concludes that EMF-r in the communication range (900 and 1800 MHz) adversely affect root meristems in plants and induce cytotoxic and DNA damage. EMF-r induced DNA damage was more pronounced at 1800 MHz than that at 900 MHz.

KEYWORDS:

Clastogenic effect; Comet assay; Cytotoxicity; DNA damage; EMF radiations; Meristematic tissue

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center