Format

Send to

Choose Destination
Nat Commun. 2019 Oct 31;10(1):4981. doi: 10.1038/s41467-019-12948-2.

Soil net nitrogen mineralisation across global grasslands.

Author information

1
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland. anita.risch@wsl.ch.
2
Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zuercherstrasse 111, 8903, Birmensdorf, Switzerland.
3
Department of Biology, IVAGRO, University of Cádiz, Campus de Excelencia Internacional Agroalimentario (ceiA3), Campus Rio San Pedro, 11510, Puerto Real, Cádiz, Spain.
4
Queensland University of Technology (QUT), School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Brisbane, QLD, 4001, Australia.
5
USDA-ARS Grassland Soil, and Water Research Laboratory, Temple, TX, 76502, USA.
6
Department of Ecology, Evolution, and Behavior, University of Minnesota, St. Paul, MN, USA.
7
Department of Physiological Diversity, Helmholtz Center for Environmental Research-UFZ, Permoserstrasse 15, Leipzig, 04318, Germany.
8
German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, Leipzig, 04103, Germany.
9
Institute of Biology, Martin Luther University Halle-Wittenberg, Am Kirchtor 1, Halle (Saale), 06108, Germany.
10
School of Biological Sciences, University of Nebraska, 211A Manter Hall, Lincoln, NE, 68588, USA.
11
Department of Health and Environmental Sciences, Xi'an Jiaotong Liverpool University, Suzhou, 215213, China.
12
Department of Plant & Soil Sciences, University of Kentucky, Lexington, KY, 40546-0312, USA.
13
School of Earth and Environmental Sciences, Michael Smith Building, The University of Manchester, Oxford Road, Manchester, M13 9PT, UK.
14
Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
15
University of Florida, Range Cattle Research and Education Center, Ona, FL, 33865, USA.
16
Department of Wildland Resources and the Ecology Center, Utah State University, 5230 Old Main, Logan, UT, 84103, USA.
17
Departamento de Biología, Escuela Politécnica Nacional del Ecuador, Ladrón de Guevera E11-253 y Andalucía, Quito, Ecuador.
18
Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, 50011, USA.
19
Division of Biology, Kansas State University, Manhattan, KS, 66502, USA.
20
Department of Bioagricultural Sciences and Pest Management, Graduate Degree Program in Ecology, Colorado State University, 1177 Campus Delivery, Fort Collins, CO, USA.
21
Centro de Estudos Florestais, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
22
Department of Biology, University of New Mexico, Albuquerque, NM, 87131, USA.
23
Instituto de Investigaciones Marinas y Costeras (IIMyC), Universidad Nacional de Mar del Plata, CONICET, Mar del Plata, Argentina.
24
INIBIOMA (CONICET-UNCOMA), Universidad Nacional del Comahue, Grupo de Investigaciones en Biología de la Conservación (GrInBiC) Laboratorio Ecotono, Quintral, 1250, Bariloche, Argentina.
25
Institute of Ecology and Evolution, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743, Jena, Germany.
26
Institute of Biology, Leipzig University, Deutscher Platz 5e, 04103, Leipzig, Germany.
27
University of California San Diego, 9500 Gilman Dr, La Jolla, CA, 92037, USA.
28
Department of Ecology and Genetics, University of Oulu, Pentti Kaiteran katu 1, 90014, Oulu, Finland.
29
Mammal Research Institute, Department of Zoology & Entomology, University of Pretoria, Pretoria, South Africa.
30
Ecology and Biodiversity Group, Department of Biology, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
31
University of KwaZulu-Natal, Pietermaritzburg, Private Bag X01, Scottsville, 3209, South Africa.
32
Department of Integrative Biology, University of Guelph, Guelph, N1G 2W1, ON, Canada.
33
School of Biological Sciences, Monash University, Claytion, VIC, 3800, Australia.
34
Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia.
35
CSIRO Land and Water, Private Bag 5, Wembley, WA, 6913, Australia.
36
National Centre for Biological Sciences, TIFR, Bangalore, 560065, India.
37
School of Biology, University of Leeds, Leeds, LS2 9JT, UK.
38
Universidad de Buenos Aires, Facultad de Agronomía, Instituto de Investigaciones Fisiológicas y Ecológicas vinculadas a la Agricultura (IFEVA), CONICET, Buenos Aires, Argentina.

Abstract

Soil nitrogen mineralisation (Nmin), the conversion of organic into inorganic N, is important for productivity and nutrient cycling. The balance between mineralisation and immobilisation (net Nmin) varies with soil properties and climate. However, because most global-scale assessments of net Nmin are laboratory-based, its regulation under field-conditions and implications for real-world soil functioning remain uncertain. Here, we explore the drivers of realised (field) and potential (laboratory) soil net Nmin across 30 grasslands worldwide. We find that realised Nmin is largely explained by temperature of the wettest quarter, microbial biomass, clay content and bulk density. Potential Nmin only weakly correlates with realised Nmin, but contributes to explain realised net Nmin when combined with soil and climatic variables. We provide novel insights of global realised soil net Nmin and show that potential soil net Nmin data available in the literature could be parameterised with soil and climate data to better predict realised Nmin.

Supplemental Content

Full text links

Icon for Nature Publishing Group Icon for PubMed Central
Loading ...
Support Center