Send to

Choose Destination
Biochemistry. 1988 Jun 28;27(13):4730-4.

Enhanced DNA repair as a mechanism of resistance to cis-diamminedichloroplatinum(II).

Author information

Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha 68105.


Murine leukemia L1210 cells, either sensitive or resistant to the toxic action of the cancer chemotherapeutic agent cis-diamminedichloroplatinum(II), have been studied for potential differences in the formation and repair of drug-induced DNA damage. The sensitivity for these experiments was obtained by using the radiolabeled analogue [3H]-cis-dichloro(ethylenediamine)platinum(II). The resistant cells demonstrated a 40% reduction in drug accumulation but a qualitatively similar profile of DNA-bound adducts. These adducts resembled those previously characterized in pure DNA and represented intrastrand cross-links at GG, AG, and GNG (N is any nucleotide) sequences in DNA. Repair of these cross-links occurred in a biphasic manner: rapid for the first 6 h and then much slower. The resistant cells removed up to 4 times as many adducts during the rapid phase of repair. The extent of this repair did not directly correlate with the degree of resistance in that cells with 100-fold resistance were only slightly more effective at repair than cells with 20-fold resistance. Therefore, although enhanced DNA repair is thought to contribute markedly to drug resistance, other mechanisms for tolerance of DNA damage may also occur in these cells.

[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center