Format

Send to

Choose Destination
Mol Phylogenet Evol. 2020 Jan;142:106659. doi: 10.1016/j.ympev.2019.106659. Epub 2019 Oct 19.

Accelerated diversification correlated with functional traits shapes extant diversity of the early divergent angiosperm family Annonaceae.

Author information

1
College of Horticulture and Landscape Architecture, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, Guangdong, China; Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, Guangdong, China.
2
Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China; Current address: State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Beishan Industrial Zone, Shenzhen, China.
3
Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA.
4
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA.
5
Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
6
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA.
7
Florida Museum of Natural History, University of Florida, Gainesville, FL 32611, USA; Department of Biology, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32610, USA; Biodiversity Institute, University of Florida, Gainesville, FL 32611, USA.
8
Division of Ecology & Biodiversity, School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong, China. Electronic address: saunders@hku.hk.

Abstract

A major goal of phylogenetic systematics is to understand both the patterns of diversification and the processes by which these patterns are formed. Few studies have focused on the ancient, species-rich Magnoliales clade and its diversification pattern. Within Magnoliales, the pantropically distributed Annonaceae are by far the most genus-rich and species-rich family-level clade, with c. 110 genera and c. 2,400 species. We investigated the diversification patterns across Annonaceae and identified traits that show varied associations with diversification rates using a time-calibrated phylogeny of 835 species (34.6% sampling) and 11,211 aligned bases from eight regions of the plastid genome (rbcL, matK, ndhF, psbA-trnH, trnL-F, atpB-rbcL, trnS-G, and ycf1). Twelve rate shifts were identified using BAMM: in Annona, Artabotrys, Asimina, Drepananthus, Duguetia, Goniothalamus, Guatteria, Uvaria, Xylopia, the tribes Miliuseae and Malmeeae, and the Desmos-Dasymaschalon-Friesodielsia-Monanthotaxis clade. TurboMEDUSA and method-of-moments estimator analyses showed largely congruent results. A positive relationship between species richness and diversification rate is revealed using PGLS. Our results show that the high species richness in Annonaceae is likely the result of recent increased diversification rather than the steady accumulation of species via the 'museum model'. We further explore the possible role of selected traits (habit, pollinator trapping, floral sex expression, pollen dispersal unit, anther septation, and seed dispersal unit) in shaping diversification patterns, based on inferences of BiSSE, MuSSE, HiSSE, and FiSSE analyses. Our results suggest that the liana habit, the presence of circadian pollinator trapping, androdioecy, and the dispersal of seeds as single-seeded monocarp fragments are closely correlated with higher diversification rates; pollen aggregation and anther septation, in contrast, are associated with lower diversification rates.

KEYWORDS:

Annonaceae; Diversification rates; Liana; Pollination trap; Seed dispersal; Traits

PMID:
31639525
DOI:
10.1016/j.ympev.2019.106659
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center