Format

Send to

Choose Destination
ACS Appl Mater Interfaces. 2019 Nov 13;11(45):42486-42495. doi: 10.1021/acsami.9b15234. Epub 2019 Nov 4.

Bone-Inspired Mineralization with Highly Aligned Cellulose Nanofibers as Template.

Author information

1
Department of Mechanical and Industrial Engineering , Northeastern University , Boston , Massachusetts 02115 , United States.
2
MDRCBB-Minnesota Dental Research Center for Biomaterials and Biomechanics , University of Minnesota , Minneapolis , Minnesota 55455 , United States.

Abstract

Bioinspired by the aligned structure and building blocks of bone, this work mineralized the aligned bacterial cellulose (BC) through in situ mineralization using CaCl2 and K2HPO4 solutions. The cellulose nanofibers were aligned by a scalable stretching process. The aligned and mineralized bacterial cellulose (AMBC) homogeneously incorporated hydroxyapatite (HAP) with a high mineral content and exhibited excellent mechanical strength. The ordered 3D structure allowed the AMBC composite to achieve a high elastic modulus and hardness and the development of a nanostructure inspired by natural bone. The AMBC composite exhibited an elastic modulus of 10.91 ± 3.26 GPa and hardness of 0.37 ± 0.18 GPa. Compared with the nonaligned mineralized bacterial cellulose (NMBC) composite with mineralized crystals of HAP randomly distributed into the BC scaffolds, the AMBC composite possessed a 210% higher elastic modulus and 95% higher hardness. The obtained AMBC composite had excellent mechanical properties by mimicking the natural structure of bone, which indicated that the organic BC aerogel with aligned nanofibers was a promising template for biomimetic mineralization.

KEYWORDS:

alignment; bacterial nanocellulose; biomimetic mineralization; hardness; hydroxyapatite composite

PMID:
31638768
DOI:
10.1021/acsami.9b15234

Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center