Format

Send to

Choose Destination
J Clin Med. 2019 Oct 18;8(10). pii: E1723. doi: 10.3390/jcm8101723.

Monitoring and Determining Mitochondrial Network Parameters in Live Lung Cancer Cells.

Author information

1
Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA. tmirzapoiazova@coh.org.
2
Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA. hali@coh.org.
3
Department of Computational & Quantitative Medicine, Beckman Research Institute, City of Hope Medical Center, Duarte, CA 91010, USA. hali@coh.org.
4
Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA. anathan@coh.org.
5
Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA. ssrivastava@coh.org.
6
University of Nebraska, Medical Center, Nebraska, NE 68198, USA. wasim.nasser@unmc.edu.
7
Abbott Molecular, Des Plaines, IL 60018, USA. franlen@gmail.com.
8
Department of Developmental and Stem Cell Biology, City of Hope National Medical Center, Duarte, CA 91010, USA. BArmstrong@coh.org.
9
Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA. Imambetsariev@coh.org.
10
Department of Anatomic Pathology, City of Hope National Medical Center, Duarte, CA 91010, USA. PChu@coh.org.
11
Center for Informatics, City of Hope National Medical Center, Duarte, CA 91010, USA. sachuthan@coh.org.
12
University of Nebraska, Medical Center, Nebraska, NE 68198, USA. sbatra@unmc.edu.
13
Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA. pkulkarni@coh.org.
14
Department of Medical Oncology and Therapeutics Research, City of Hope National Medical Center, Duarte, CA 91010, USA. rsalgia@coh.org.

Abstract

Mitochondria are dynamic organelles that constantly fuse and divide, forming dynamic tubular networks. Abnormalities in mitochondrial dynamics and morphology are linked to diverse pathological states, including cancer. Thus, alterations in mitochondrial parameters could indicate early events of disease manifestation or progression. However, finding reliable and quantitative tools for monitoring mitochondria and determining the network parameters, particularly in live cells, has proven challenging. Here, we present a 2D confocal imaging-based approach that combines automatic mitochondrial morphology and dynamics analysis with fractal analysis in live small cell lung cancer (SCLC) cells. We chose SCLC cells as a test case since they typically have very little cytoplasm, but an abundance of smaller mitochondria compared to many of the commonly used cell types. The 2D confocal images provide a robust approach to quantitatively measure mitochondrial dynamics and morphology in live cells. Furthermore, we performed 3D reconstruction of electron microscopic images and show that the 3D reconstruction of the electron microscopic images complements this approach to yield better resolution. The data also suggest that the parameters of mitochondrial dynamics and fractal dimensions are sensitive indicators of cellular response to subtle perturbations, and hence, may serve as potential markers of drug response in lung cancer.

KEYWORDS:

dynamics; fractals; imaging; lung cancer; mitochondria; morphology; scanning electron microscopy

Supplemental Content

Full text links

Icon for Multidisciplinary Digital Publishing Institute (MDPI) Icon for PubMed Central
Loading ...
Support Center