Format

Send to

Choose Destination
Hum Mol Genet. 2019 Oct 18. pii: ddz232. doi: 10.1093/hmg/ddz232. [Epub ahead of print]

AKT signaling promotes DNA damage accumulation and proliferation in polycystic kidney disease.

Author information

1
Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia 3800.
2
Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Department of Anatomy and Developmental Biology, Monash University, Clayton, Australia 3800.

Abstract

Polycystic kidney disease (PKD) results in the formation of renal cysts that can impair function leading to renal failure. DNA damage accumulates in renal epithelial cells in PKD but the molecular mechanisms are unclear and are investigated here. Phosphoinositide 3- kinase (PI3K)/AKT signaling activates mammalian target of rapamycin complex 1 (mTORC1) and hyperactivation of mTORC1 is a common event in PKD, however, mTORC1 inhibitors have yielded disappointing results in clinical trials. Here we demonstrate AKT and mTORC1 hyperactivation in two representative murine PKD models (renal epithelial-specific Inpp5e knockout and collecting duct-specific Pkd1 deletion) and identify a downstream signaling network that contributes to DNA damage accumulation. Inpp5e- and Pkd1-null renal epithelial cells showed DNA damage including double-stranded DNA breaks associated with increased replication fork numbers, multinucleation and centrosome amplification. mTORC1 activated CAD, which promotes de novo pyrimidine synthesis, to sustain cell proliferation. AKT, but not mTORC1, inhibited the DNA repair/replication fork origin firing regulator TOPBP1, which impacts on DNA damage and cell proliferation. Notably, Inpp5e- and Pkd1-null renal epithelial cell spheroid formation defects were rescued by AKT inhibition. These data reveal that AKT hyperactivation contributes to DNA damage accumulation in multiple forms of PKD and cooperates with mTORC1 to promote cell proliferation. Hyperactivation of AKT may play a causal role in PKD by regulating DNA damage and cell proliferation, independent of mTORC1, and AKT inhibition may be a novel therapeutic approach for PKD.

PMID:
31625572
DOI:
10.1093/hmg/ddz232

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center