Format

Send to

Choose Destination
Dev Comp Immunol. 2019 Oct 13;103:103495. doi: 10.1016/j.dci.2019.103495. [Epub ahead of print]

Hemocytin facilitates host immune responses against Nosema bombycis.

Author information

1
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China.
2
State Key Laboratory of Silkworm Genome Biology, Southwest University, Chongqing, China; Chongqing Key Laboratory of Microsporidia Infection and Control, Southwest University, Chongqing, China; Chongqing Normal University, Chongqing, China. Electronic address: zyzhou@swu.edu.cn.

Abstract

Invertebrates lack an adaptive immune response and thus are reliant on their innate immune response for eliminating invading pathogens. The innate immune responses of silkworms against the pathogen Nosema bombycis include: hemocyte aggregation, melanization, antimicrobial peptides, etc. In our current study, we discovered that a silkworm hemostasis-related protein, hemocytin, is up-regulated after Nosema bombycis infection. This novel finding lead to our hypothesis that hemocytin participates in immune responses against N. bombycis. We investigated this hypothesis by analyzing the adhesive effects of hemocytin to invading N. bombycis, and the hemocytin-mediated hemocyte aggregation and hemolymph melanization. We showed that hemocytin can adhere to the surface of N. bombycis, which facilitates the agglutination of N. bombycis and hemocytes as well as the subsequent melanization. Moreover, when we utilize RNAi technology to decrease in vivo hemocytin expression, we found that the proliferation of N. bombycis within the host significantly increased. These results support our hypothesis that hemocytin exerts pro-inflammatory effects by facilitating pathogen agglutination, along with hemocyte aggregation and melanization, to combat N. bombycis. Our study is the first to determine a function of hemocytin in innate immunity against N. bombycis. Moreover, our findings are of great importance to provide potential targets for developing novel strategy against microsporidia infection.

KEYWORDS:

Aggregation; Hemocytin; Innate immunity; Melanization; Nosema bombycis

PMID:
31618618
DOI:
10.1016/j.dci.2019.103495

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center