Send to

Choose Destination
J Nutr. 2019 Oct 16. pii: nxz249. doi: 10.1093/jn/nxz249. [Epub ahead of print]

Protein Intake to Maximize Whole-Body Anabolism during Postexercise Recovery in Resistance-Trained Men with High Habitual Intakes is Severalfold Greater than the Current Recommended Dietary Allowance.

Author information

Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, Ontario, Canada.



Dietary protein supports resistance exercise-induced anabolism primarily via the stimulation of protein synthesis rates. The indicator amino acid oxidation (IAAO) technique provides a noninvasive estimate of the protein intake that maximizes whole-body protein synthesis rates and net protein balance.


We utilized IAAO to determine the maximal anabolic response to postexercise protein ingestion in resistance-trained men.


Seven resistance-trained men (mean ± SD age 24 ± 3 y; weight 80 ± 9 kg; 11 ± 5% body fat; habitual protein intake 2.3 ± 0.6 g·kg-1·d-1) performed a bout of whole-body resistance exercise prior to ingesting hourly mixed meals, which provided a variable amount of protein (0.20-3.00 g·kg-1·d-1) as crystalline amino acids modeled after egg protein. Steady-state protein kinetics were modeled with oral l-[1-13C]-phenylalanine. Breath and urine samples were taken at isotopic steady state to determine phenylalanine flux (PheRa), phenylalanine excretion (F13CO2; reciprocal of protein synthesis), and net balance (protein synthesis - PheRa). Total amino acid oxidation was estimated from the ratio of urinary urea and creatinine.


Mixed model biphasic linear regression revealed a plateau in F13CO2 (mean: 2.00; 95% CI: 1.62, 2.38 g protein·kg-1·d-1) (r2 = 0.64; P ˂ 0.01) and in net balance (mean: 2.01; 95% CI: 1.44, 2.57 g protein·kg-1·d-1) (r2 = 0.63; P ˂ 0.01). Ratios of urinary urea and creatinine concentrations increased linearly (r = 0.84; P ˂ 0.01) across the range of protein intakes.


A breakpoint protein intake of ∼2.0 g·kg-1·d-1, which maximized whole-body anabolism in resistance-trained men after exercise, is greater than previous IAAO-derived estimates for nonexercising men and is at the upper range of current general protein recommendations for athletes. The capacity to enhance whole-body net balance may be greater than previously suggested to maximize muscle protein synthesis in resistance-trained athletes accustomed to a high habitual protein intake. This trial was registered at as NCT03696264.


Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center