Format

Send to

Choose Destination
J Genomics. 2019 Sep 17;7:50-55. doi: 10.7150/jgen.35875. eCollection 2019.

Draft genome sequences for three unisolated Alnus-infective Frankia Sp+ strains, AgTrS, AiOr and AvVan, the first sequenced Frankia strains able to sporulate in-planta.

Author information

1
Univ Lyon, Université Lyon 1, CNRS, UMR5557, Ecologie Microbienne, INRA, UMR 1418, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France.
2
Univ Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Évolutive, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France.
3
Univ Lyon, Université Lyon 1, DTAMB, FR 3728 BioEnviS, 43 bd du 11 novembre 1918, F-69622 Villeurbanne, France.
4
Biofidal, 170 av Gabriel Péri, F-69518 Vaulx-en-Velin, France.

Abstract

Actinobacteria from genus Frankia are able to form symbiotic associations with actinorhizal plants including alders. Among them, Sp+ strains are characterized by their ability to differentiate numerous sporangia inside host plant cells (unlike "Sp-" strains unable of in-planta sporulation). Here, we report the first genome sequences of three unisolated Sp+ strains: AgTrS, AiOr and AvVan obtained from Alnus glutinosa, A. incana and A. alnobetula (previously known as viridis), respectively (with genome completeness estimated at more than 98%). They represent new Frankia species based on Average Nucleotide Identity (ANI) calculations, and the smallest Alnus-infective Frankia genomes so far sequenced (~5 Mbp), with 5,178, 6,192 and 5,751 candidate protein-encoding genes for AgTrS, AiOr and AvVan, respectively.

KEYWORDS:

AgTrS; AiOr; AvVan; Frankia

Conflict of interest statement

Competing Interests: The authors have declared that no competing interest exists.

Supplemental Content

Full text links

Icon for Ivyspring International Publisher Icon for PubMed Central
Loading ...
Support Center