Send to

Choose Destination
Zhong Nan Da Xue Xue Bao Yi Xue Ban. 2019 Aug 28;44(8):850-856. doi: 10.11817/j.issn.1672-7347.2019.08.180429.

[Effects of genistein on Nrf2/HO-1 pathway in myocardial tissues of diabetic rats].

[Article in Chinese; Abstract available in Chinese from the publisher]

Author information

Department of Physiology, Bengbu Medical College, Bengbu Anhui 233030, China.
Center of Functional Experiment, Bengbu Medical College, Bengbu Anhui 233030, China.


in English, Chinese

To investigate the effects of genistein (Gen) on nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) pathway in myocardial tissues of diabetic rats.
 Methods: Thirty-two male SD rats were randomly divided into 4 groups: a normal control (NC) group, a diabetic control (DM) group, a low-dose Gen treatment (L-Gen) group, and a high-dose Gen treatment (H-Gen) group (n=8). Intraperitoneal injection of streptozotocin was utilized to induce diabetic rat model. After the establishment of diabetic model, the rats in L-Gen and H-Gen groups were intragastric administration with 10 and 50 mg/kg Gen solution. Following 8 weeks, the left ventricular hemodynamic parameters and fasting blood glucose (FBG) levels were measured. The levels of malondialdehyde (MDA), glutathione peroxidase (GSH-Px), superoxide dismutase (SOD) and catalase (CAT) in myocardial tissue were determined. The ultrastructure of myocardium was observed under transmission electron microscopy. The expression of HO-1 at mRNA level in myocardial tissue was detected by RT-PCR. The protein levels of Nrf2 and HO-1 in myocardial tissue were detected by Western blotting. 
 Results: Compared with the NC group, left ventricular systolic pressure (LVSP), maximal rise/fall rate of left ventricular pressure (±dp/dtmax), and the levels of GSH-Px, SOD and CAT were decreased (all P<0.01), while the left ventricular end-diastolic pressure (LVEDP), FBG and MDA were increased (all P<0.01) in the DM group. The myocardial ultrastructure was obviously damaged, and the expressions of myocardial Nrf2 and HO-1 were significantly decreased (both P<0.01) in the DM group. Compared with the DM group, there was no difference in FBG in the L-Gen group, while ±dp/dtmax and LVSP were significantly increased (all P<0.05), and LVEDP and MDA were decreased (P<0.05 or P<0.01), and the levels of GSH-Px, SOD and CAT were increased (P<0.05 or P<0.01) in the L-Gen group. The myocardial ultrastructure damage was alleviated and the expressions of Nrf2 and HO-1 were increased (both P<0.01) in the L-Gen group. Compared with L-Gen group, the aforementioned indexes were improved in the H-Gen group (P<0.05 or P<0.01).
 Conclusion: Genistein exerted antioxidant effects on myocardial injury in diabetic rats, and the mechanisms might be related to regulating the Nrf2/HO-1 pathway and enhancing the activities of antioxidant enzymes in myocardial tissues.

[Indexed for MEDLINE]
Free full text

Supplemental Content

Full text links

Loading ...
Support Center