Format

Send to

Choose Destination
J Steroid Biochem Mol Biol. 2019 Sep 24:105476. doi: 10.1016/j.jsbmb.2019.105476. [Epub ahead of print]

Simultaneous quantification of estrogens and glucocorticoids in human adipose tissue by liquid-chromatography-tandem mass spectrometry.

Author information

1
CHU de Québec-Université Laval Research Center (Endocrinology and Nephrology Division), School of Nutrition, Faculty of Agriculture and Food Sciences, Université Laval, Québec, Canada; Quebec Heart Lung Institute, Québec, Canada.
2
Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, Edinburgh, United Kingdom; Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, University Avenue, Glasgow, United Kingdom; Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Cathedral Street, Glasgow, United Kingdom.
3
CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center and Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada; Centre des maladies du sein Deschênes-Fabia, Hôpital Saint-Sacrement, Québec, Canada.
4
CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center and Department of Surgery, Faculty of Medicine, Université Laval, Québec, Canada.
5
University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, UK; Newcastle University, Newcastle upon Tyne, NE1 7RU, UK.
6
CHU de Québec-Université Laval Research Center (Endocrinology and Nephrology Division), Université Laval Cancer Research Center and Department of Molecular Medicine, Faculty of Medicine, Université Laval, Québec, Canada.
7
Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, Edinburgh, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, UK.
8
Centre des maladies du sein Deschênes-Fabia, Hôpital Saint-Sacrement, Québec, Canada; CHU de Québec-Université Laval Research Center (Oncology Division), Université Laval Cancer Research Center and Department of Social and Preventive Medicine, Faculty of Medicine, Université Laval, Québec, Canada.
9
Mass Spectrometry Core, Edinburgh Clinical Research Facility, Queen's Medical Research Institute, Edinburgh, United Kingdom; University/BHF Centre for Cardiovascular Science, Queen's Medical Research Institute, University of Edinburgh, 47, Little France Crescent, Edinburgh, EH16 4TJ, UK. Electronic address: ruth.andrew@ed.ac.uk.

Abstract

The presence of estrogens, androgens and glucocorticoids as well as their receptors and steroid converting enzymes in adipose tissue has been established. Their contribution to diseases such as obesity, diabetes and hormone-dependent cancers is an active area of research. Our objective was to develop a LC-MS/MS method to quantify bioactive estrogens and glucocorticoids simultaneously in human adipose tissue. Estrogens and glucocorticoids were extracted from adipose tissue samples using solid-phase extraction. Estrogens were derivatized using 1-(5-fluoro-2,4-dinitrophenyl)-4-methylpiperazine (PPZ) and methyl iodide to generate a permanently charged molecule (MPPZ). Steroids were separated and quantified by LC-MS/MS. The limit of quantitation for the steroids was between 15 and 100 pg per sample. Accuracy and precision were acceptable (< 20%). Using this method, estradiol, estrone, cortisone and cortisol were quantified in adipose tissue from women with and without breast cancer. This novel assay of estrogens and glucocorticoids by LC-MS/MS coupled with derivatization allowed simultaneous quantification of a panel of steroids in human adipose tissue across the endogenous range of concentrations encountered in health and disease.

KEYWORDS:

adipose.; cortisol; cortisone; derivatization; estradiol; estrone

PMID:
31561001
DOI:
10.1016/j.jsbmb.2019.105476
Free full text

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center