Visual Object Tracking by Hierarchical Attention Siamese Network

IEEE Trans Cybern. 2020 Jul;50(7):3068-3080. doi: 10.1109/TCYB.2019.2936503. Epub 2019 Sep 12.

Abstract

Visual tracking addresses the problem of localizing an arbitrary target in video according to the annotated bounding box. In this article, we present a novel tracking method by introducing the attention mechanism into the Siamese network to increase its matching discrimination. We propose a new way to compute attention weights to improve matching performance by a sub-Siamese network [Attention Net (A-Net)], which locates attentive parts for solving the searching problem. In addition, features in higher layers can preserve more semantic information while features in lower layers preserve more location information. Thus, in order to solve the tracking failure cases by the higher layer features, we fully utilize location and semantic information by multilevel features and propose a new way to fuse multiscale response maps from each layer to obtain a more accurate position estimation of the object. We further propose a hierarchical attention Siamese network by combining the attention weights and multilayer integration for tracking. Our method is implemented with a pretrained network which can outperform most well-trained Siamese trackers even without any fine-tuning and online updating. The comparison results with the state-of-the-art methods on popular tracking benchmarks show that our method achieves better performance. Our source code and results will be available at https://github.com/shenjianbing/HASN.