New Varying-Parameter ZNN Models With Finite-Time Convergence and Noise Suppression for Time-Varying Matrix Moore-Penrose Inversion

IEEE Trans Neural Netw Learn Syst. 2020 Aug;31(8):2980-2992. doi: 10.1109/TNNLS.2019.2934734. Epub 2019 Sep 12.

Abstract

This article aims to solve the Moore-Penrose inverse of time-varying full-rank matrices in the presence of various noises in real time. For this purpose, two varying-parameter zeroing neural networks (VPZNNs) are proposed. Specifically, VPZNN-R and VPZNN-L models, which are based on a new design formula, are designed to solve the right and left Moore-Penrose inversion problems of time-varying full-rank matrices, respectively. The two VPZNN models are activated by two novel varying-parameter nonlinear activation functions. Detailed theoretical derivations are presented to show the desired finite-time convergence and outstanding robustness of the proposed VPZNN models under various kinds of noises. In addition, existing neural models, such as the original ZNN (OZNN) and the integration-enhanced ZNN (IEZNN), are compared with the VPZNN models. Simulation observations verify the advantages of the VPZNN models over the OZNN and IEZNN models in terms of convergence and robustness. The potential of the VPZNN models for robotic applications is then illustrated by an example of robot path tracking.