Format

Send to

Choose Destination
NPJ Digit Med. 2019 Sep 9;2:89. doi: 10.1038/s41746-019-0167-0. eCollection 2019.

Automated tracking of level of consciousness and delirium in critical illness using deep learning.

Author information

1
1Department of Neurology, Massachusetts General Hospital, Boston, MA USA.
2
2Department of Anesthesia, Critical Care, and Pain Medicine, Massachusetts General Hospital, Boston, MA USA.
3
3Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands.

Abstract

Over- and under-sedation are common in the ICU, and contribute to poor ICU outcomes including delirium. Behavioral assessments, such as Richmond Agitation-Sedation Scale (RASS) for monitoring levels of sedation and Confusion Assessment Method for the ICU (CAM-ICU) for detecting signs of delirium, are often used. As an alternative, brain monitoring with electroencephalography (EEG) has been proposed in the operating room, but is challenging to implement in ICU due to the differences between critical illness and elective surgery, as well as the duration of sedation. Here we present a deep learning model based on a combination of convolutional and recurrent neural networks that automatically tracks both the level of consciousness and delirium using frontal EEG signals in the ICU. For level of consciousness, the system achieves a median accuracy of 70% when allowing prediction to be within one RASS level difference across all patients, which is comparable or higher than the median technician-nurse agreement at 59%. For delirium, the system achieves an AUC of 0.80 with 69% sensitivity and 83% specificity at the optimal operating point. The results show it is feasible to continuously track level of consciousness and delirium in the ICU.

KEYWORDS:

Diagnostic markers; Disorders of consciousness; Translational research

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center