Send to

Choose Destination
Environ Sci Technol. 2019 Oct 1;53(19):11066-11079. doi: 10.1021/acs.est.9b00603. Epub 2019 Sep 16.

Mainstream Ammonium Recovery to Advance Sustainable Urban Wastewater Management.

Author information

School of Civil Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia.
Singapore Centre for Environmental Life Sciences Engineering , Nanyang Technological University , 637551 , Singapore.
Department of Civil and Environmental Engineering , University of Illinois at Urbana-Champaign , Illinois 61801 , United States.
Center for Microbial Ecology and Technology (CMET) , Ghent University , Coupure Links 653 , 9000 Gent , Belgium.
Advanced Water Management Centre , The University of Queensland , Brisbane , Queensland 4072 , Australia.
School of Chemical Engineering , The University of Queensland , Brisbane , Queensland 4072 , Australia.


Throughout the 20th century, the prevailing approach toward nitrogen management in municipal wastewater treatment was to remove ammonium by transforming it into dinitrogen (N2) using biological processes such as conventional activated sludge. While this has been a very successful strategy for safeguarding human health and protecting aquatic ecosystems, the conversion of ammonium into its elemental form is incompatible with the developing circular economy of the 21st century. Equally important, the activated sludge process and other emerging ammonium removal pathways have several environmental and technological limitations. Here, we assess that the theoretical energy embedded in ammonium in domestic wastewater represents roughly 38-48% of the embedded chemical energy available in the whole of the discharged bodily waste. The current routes for ammonium removal not only neglect the energy embedded in ammonium, but they can also produce N2O, a very strong greenhouse gas, with such emissions comprising the equivalent of 14-26% of the overall carbon footprint of wastewater treatment plants. N2O emissions often exceed the carbon emissions related to the electricity consumption for the process requirements of WWTPs. Considering these limitations, there is a need to develop alternative ammonium management approaches that center around recovery of ammonium from domestic wastewater rather than deal with its "destruction" into elemental dinitrogen. Current ammonium recovery techniques are applicable only at orders of magnitude above domestic wastewater strength, and so new techniques based on physicochemical adsorption are of particular interest. A new pathway is proposed that allows for mainstream ammonium recovery from wastewater based on physicochemical adsorption through development of polymer-based adsorbents. Provided adequate adsorbents corresponding to characteristics outlined in this paper are designed and brought to industrial production, this adsorption-based approach opens perspectives for mainstream continuous adsorption coupled with side-stream recovery of ammonium with minimal chemical requirements. This proposed pathway can bring forward an effective resource-oriented approach to upgrade the fate of ammonium in urban water management without generating hidden externalized environmental costs.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center