Format

Send to

Choose Destination
Environ Res. 2019 Nov;178:108684. doi: 10.1016/j.envres.2019.108684. Epub 2019 Aug 23.

Exposure to chlorpyrifos at different ages triggers APOE genotype-specific responses in social behavior, body weight and hypothalamic gene expression.

Author information

1
Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
2
Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.
3
Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
4
Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Biochemistry and Biotechnology, Universitat Rovira i Virgili, Tarragona, Spain.
5
Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Physiology/Endocrinology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden.
6
Department of Psychology and CEINSA, Almeria University-ceiA3, Almeria, Spain.
7
Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain.
8
Research in Neurobehavior and Health (NEUROLAB), Universitat Rovira i Virgili, Tarragona, Spain; Department of Psychology and Research Center for Behavior Assessment (CRAMC), Universitat Rovira i Virgili, Tarragona, Spain; Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat Rovira i Virgili, Reus, Spain. Electronic address: mariateresa.colomina@urv.cat.

Abstract

To date, we have shown that apolipoprotein E (APOE) polymorphisms differentially modulate the neurobehavioral and metabolic effects of chlorpyrifos (CPF), a widely used pesticide, which is detected as residue in food. We previously reported that, after being exposed to CPF, APOE3 subjects exhibit metabolic dysfunctions while APOE4 subjects undergo changes in behavior. In the current study, we investigated the effects of a double exposure to CPF on social behavior and hypothalamic gene expression in apoE-targeted replacement (TR) mice. Male apoE3-and apoE4-TR mice were exposed to CPF at 0 or 1 mg/kg/day on postnatal days 10-15 and then, during adulthood (5 months of age), fed a CPF-supplemented diet (0 or 2 mg/kg/day) for 15 days. During adult exposure to CPF, body weight gain and food intake were monitored. At the end of the adult exposure period, we evaluated social behavior in a three-chamber test, as well as mRNA levels of hypothalamic neuropeptides and receptors related to social behavior and feeding control. Adult CPF exposure increased food intake in general, but only apoE4 mice increased their body weight. Postnatal CPF exposure improved preference for the social contexts in apoE4 mice while adult CPF exposure did the same in apoE3 mice. Anorexigenic-peptide and social-related behavior gene expression decreased as a result of adult CPF exposure in apoE4 mice, and neuropeptide Y was more expressed in apoE4 mice. These results indicate that CPF exposure produces orexigenic and metabolic effects and enlarges individual differences in social behavior, especially in apoE3 mice.

KEYWORDS:

APOE genotype; Chlorpyrifos; Feeding control; Gene x environmental factor; Social behavior

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center