Format

Send to

Choose Destination
Food Environ Virol. 2019 Aug 21. doi: 10.1007/s12560-019-09400-5. [Epub ahead of print]

Development and Evaluation of a Novel Armored RNA Technology Using Bacteriophage Qβ.

Author information

1
Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China.
2
Key Laboratory of Testing and Evaluation for Aquatic Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, People's Republic of China. jiangyanhua4111@126.com.

Abstract

Foodborne viruses are a global threat to food safety. Real-time reverse transcription polymerase chain reaction (RT-PCR) is the most commonly used method to detect viral RNA in food. Armored RNA (AR) prepared using the MS2 phage system is a successful positive control for detecting foodborne viruses and is an important quality control process when using real-time RT-PCR. In this study, we report a novel technology for preparing AR using bacteriophage Qβ and compare its stability with AR prepared using the MS2 phage system for packaging norovirus detection target RNA. AR could be successfully and efficiently produced using the developed bacteriophage Qβ system. Two types of AR-AR-QNoV prepared using the Qβ system and AR-MNoV prepared using the MS2 system-were stored at different temperatures for different durations. After incubating at - 20 °C for 360 days, the copy numbers of AR-QNoV and AR-MNoV decreased by 8.9% and 35.9%, respectively. After incubating at 4 °C for 60 days, the copy numbers of AR-QNoV and AR-MNoV decreased by 12.0% and 38.9%, respectively. After incubating at 45 °C, the copy numbers of AR-QNoV decreased by 71.8% after 5 days, whereas those of AR-MNoV decreased by 92.9% after only 4 days. After 5 days, AR-MNoV could not be detected using real-time RT-PCR. There was a significant difference in copy numbers decrease rate between AR-QNoV and AR-MNoV at three different temperatures (P < 0.05 ). Therefore, AR prepared using the new bacteriophage Qβ system is more stable than the traditional AR, making the developed strategy a good candidate for AR preparation and quality control.

KEYWORDS:

Armored RNA; Comparison; Norovirus; Qβ phage; Stability

PMID:
31435846
DOI:
10.1007/s12560-019-09400-5

Supplemental Content

Full text links

Icon for Springer
Loading ...
Support Center