Format

Send to

Choose Destination
N Engl J Med. 2019 Aug 22;381(8):705-715. doi: 10.1056/NEJMoa1817364.

Ambient Particulate Air Pollution and Daily Mortality in 652 Cities.

Author information

1
From the School of Public Health, Key Laboratory of Public Health Safety of the Ministry of Education and National Health Commission Key Laboratory of Health Technology Assessment (C.L., R.C., H. Kan), the Department of Environmental Science and Engineering (J. Chen), Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (R.C., H. Kan), Fudan University, Shanghai Children's Medical Center, Shanghai Jiao Tong University School of Medicine (S.T.), and Children's Hospital of Fudan University, National Center for Children's Health (H. Kan), Shanghai, the School of Public Health and Management, Binzhou Medical University, Yantai (Y.G.), the School of Public Health, Institute of Environment and Population Health, Anhui Medical University, Hefei (S.T.), and the Key Laboratory of Environment and Health, Ministry of Education, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan (T.W.) - all in China; the Department of Public Health, Environments and Society (F.S., A.M.V.-C., A.M., A.G.) and the Centre for Statistical Methodology (A.G.), London School of Hygiene and Tropical Medicine, and the School of Population Health and Environmental Sciences, King's College London (K.K.), London; the Department of Epidemiology and Preventive Medicine, School of Public Health and Preventive Medicine, Monash University, Melbourne, VIC (Y.G.), and the School of Public Health and Social Work, Queensland University of Technology, Brisbane (S.T.) - both in Australia; the Institute of Advanced Studies, University of São Paulo, São Paulo (M.S.Z.S.C., P.H.N.S.); the Air Health Science Division, Health Canada, and the School of Epidemiology and Public Health, University of Ottawa, Ottawa, ON (E.L.); the Department of Public Health (P.M.) and the School of Nursing and Obstetrics (N.V.O.), Universidad de los Andes, Santiago, Chile; Hospital Vista Hermosa, Bogota, Colombia (S.O.G.); Santé Publique France, French National Public Health Agency, Saint Maurice, France (M.P.); the Department of Epidemiology, Lazio Regional Health Service-ASL Roma 1, Rome (M. Stafoggia, M. Scortichini); Karolinska Institute, Institute of Environmental Medicine, Stockholm (M. Stafoggia), and the Department of Public Health and Clinical Medicine, Umeå University, Umeå (B.F., C.Å., H.O.) - both in Sweden; the Department of Pediatric Infectious Diseases, Institute of Tropical Medicine, Nagasaki University, Nagasaki (M.H.), and the Faculty of Health and Sport Sciences, University of Tsukuba, Tsukuba (Y.H.) - both in Japan; the Department of Environmental Health, National Institute of Public Health, Cuernavaca, Mexico (M.H.-D., J. Cruz); the Department of Epidemiology, Instituto Nacional de Saúde Dr. Ricardo Jorge, Lisbon (B.N., J.P.T.), and the Epidemiology Research Unit-Instituto de Saúde Pública, Universidade do Porto, Porto (J.P.T.) - both in Portugal; the Department of Public Health Science, Graduate School of Public Health and Institute of Health and Environment, Seoul National University, Seoul, South Korea (H. Kim); the Institute of Environmental Assessment and Water Research, Spanish Council for Scientific Research, Barcelona (A.T.), and the Department of Statistics and Computational Research, University of Valencia Environmental Health Joint Research Unit Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana-Universitat de València-Universitat Jaume I de Castellón Biomedical Research Center Network for Epidemiology and Public Health, Valencia (C.I.) - both in Spain; the Swiss Tropical and Public Health Institute and the University of Basel, Basel, Switzerland (M.S.R.); Environmental and Occupational Medicine, National Taiwan University (Y.-L.G., B.-Y.C.), and the College of Medicine and National Taiwan University Hospital (Y.-L.G.), Taipei City; the School of Forestry and Environmental Studies, Yale University, New Haven, CT (M.L.B.); the Environment and Health Research Unit, South African Medical Research Council (C.Y.W.), the Department of Geography, Geo-informatics, and Meteorology, University of Pretoria (C.Y.W., R.M.G.), and the Natural Resources and the Environment Unit, Council for Scientific and Industrial Research (R.M.G.), Pretoria, and the Unit for Environmental Sciences and Management, North-West University, Potchefstroom (R.M.G.) - all in South Africa; the Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta (N.S.); the Institute of Atmospheric Physics, Czech Academy of Sciences, (J.K., A.U.), and the Faculty of Environmental Sciences (J.K.), Czech University of Life Sciences, Prague, Czech Republic; the Institute of Family Medicine and Public Health, University of Tartu, Tartu, Estonia (H.O., E.I.); the Center for Environmental and Respiratory Health Research, University of Oulu, Medical Research Center Oulu, and Oulu University Hospital and University of Oulu, Oulu, Finland (J.J.K.J., N.R.I.R.); the Department of Hygiene, Epidemiology and Medical Statistics, School of Medicine, National and Kapodistrian University of Athens, Athens (K.K., A.A.); the Department of Environmental Health, Harvard T.H. Chan School of Public Health (A.Z., J.S.), and the Health Effects Institute (A.C.), Boston; and the Institute for Health Metrics and Evaluation, University of Washington, Seattle (A.C.).

Abstract

BACKGROUND:

The systematic evaluation of the results of time-series studies of air pollution is challenged by differences in model specification and publication bias.

METHODS:

We evaluated the associations of inhalable particulate matter (PM) with an aerodynamic diameter of 10 μm or less (PM10) and fine PM with an aerodynamic diameter of 2.5 μm or less (PM2.5) with daily all-cause, cardiovascular, and respiratory mortality across multiple countries or regions. Daily data on mortality and air pollution were collected from 652 cities in 24 countries or regions. We used overdispersed generalized additive models with random-effects meta-analysis to investigate the associations. Two-pollutant models were fitted to test the robustness of the associations. Concentration-response curves from each city were pooled to allow global estimates to be derived.

RESULTS:

On average, an increase of 10 μg per cubic meter in the 2-day moving average of PM10 concentration, which represents the average over the current and previous day, was associated with increases of 0.44% (95% confidence interval [CI], 0.39 to 0.50) in daily all-cause mortality, 0.36% (95% CI, 0.30 to 0.43) in daily cardiovascular mortality, and 0.47% (95% CI, 0.35 to 0.58) in daily respiratory mortality. The corresponding increases in daily mortality for the same change in PM2.5 concentration were 0.68% (95% CI, 0.59 to 0.77), 0.55% (95% CI, 0.45 to 0.66), and 0.74% (95% CI, 0.53 to 0.95). These associations remained significant after adjustment for gaseous pollutants. Associations were stronger in locations with lower annual mean PM concentrations and higher annual mean temperatures. The pooled concentration-response curves showed a consistent increase in daily mortality with increasing PM concentration, with steeper slopes at lower PM concentrations.

CONCLUSIONS:

Our data show independent associations between short-term exposure to PM10 and PM2.5 and daily all-cause, cardiovascular, and respiratory mortality in more than 600 cities across the globe. These data reinforce the evidence of a link between mortality and PM concentration established in regional and local studies. (Funded by the National Natural Science Foundation of China and others.).

PMID:
31433918
DOI:
10.1056/NEJMoa1817364
[Indexed for MEDLINE]

Supplemental Content

Full text links

Icon for Atypon
Loading ...
Support Center