Selective gas detection using Mn3O4/WO3 composites as a sensing layer

Beilstein J Nanotechnol. 2019 Jul 17:10:1423-1433. doi: 10.3762/bjnano.10.140. eCollection 2019.

Abstract

Pure WO3 sensors and Mn3O4/WO3 composite sensors with different Mn concentrations (1 atom %, 3 atom % and 5 atom %) were successfully prepared through a facile hydrothermal method. As gas sensing materials, their sensing performance at different temperatures was systematically investigated for gas detection. The devices displayed different sensing responses toward different gases at specific temperatures. The gas sensing performance of Mn3O4/WO3 composites (especially at 3 atom % Mn) were far improved compared to sensors based on pure WO3, where the improvement is related to the heterojunction formed between the two metal oxides. The sensor based on the Mn3O4/WO3 composite with 3 atom % Mn showed a high selective response to hydrogen sulfide (H2S), ammonia (NH3) and carbon monoxide (CO) at working temperatures of 90 °C, 150 °C and 210 °C, respectively. The demonstrated superior selectivity opens the door for potential applications in gas recognition and detection.

Keywords: Mn3O4/WO3 composites; gas sensing; heterojunctions; selectivity; working temperature.