Format

Send to

Choose Destination
Anim Reprod Sci. 2019 Sep;208:106131. doi: 10.1016/j.anireprosci.2019.106131. Epub 2019 Jul 18.

Alternative splice variants and differential relative abundance patterns of vasa mRNAs during gonadal development in the Chinese mitten crab Eriocheir sinensis.

Author information

1
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China.
2
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China; Key Laboratory of East China Sea and Oceanic Fishery Resources Exploitation, Ministry of Agriculture, East China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, 200082 Shanghai, People's Republic of China.
3
Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, National Demonstration Center for Experimental Fisheries Science Education, Shanghai Engineering Research Center of Aquaculture, Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Shanghai Ocean University, 201306 Shanghai, People's Republic of China. Electronic address: gfqiu@shou.edu.cn.

Abstract

Gonadal development usually involves alternative splicing of sex-related genes. Vasa, a highly conserved ATP-dependent RNA helicase present mainly in germ cells, has an important function in gonadal development. As an important sex-related gene, recent evidence indicates that different splice variants of vasa exist in many species. In this study, there was identification of two types of vasa splice variants in the Chinese mitten crab Eriocheir sinensis, termed Esvasa-l and Esvasa-s, respectively. Furthermore, splice variants of Esvasa-s were sub-divided into Esvasa-s1, Esvasa-s2, Esvasa-s3, Esvasa-s4, and Esvasa-s5, based on differing numbers of TGG repeats. Results from genomic structure analyses indicated that these forms are alternatively spliced transcripts from a single vasa gene. Results from tissue distribution assessments indicate the vasa splice variants were exclusively expressed in the gonads of male and female adult crabs. In situ hybridization results indicate Esvasa mRNA was mainly present in the cytoplasm of previtellogenic oocytes. As oocyte size increased, relative abundance of Esvasa mRNA decreased and became distributed near the cellular membrane. The Esvasa mRNA was not detectable in mature oocytes. In testis, Esvasa mRNA was detected in spermatids and spermatozoa, but not in spermatogonia and spermatocytes. Notably, results from qPCR analysis of Esvasa-l and Esvasa-s indicate there are different relative proportions during gametogenesis, implying that splice variants of the Esvasa gene may have different biological functions during crab gonadal development.

KEYWORDS:

Eriocheir sinensis; Gonad; Splice variants; Vasa

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center