Format

Send to

Choose Destination
Neural Regen Res. 2019 Dec;14(12):2054-2062. doi: 10.4103/1673-5374.262572.

From cortex to cord: motor circuit plasticity after spinal cord injury.

Author information

1
Département de Neurosciences, Faculté de Médecine, Université de Montréal; Hôpital du Sacré-Coeur de Montréal (CIUSS-NIM), Montréal, Québec, Canada.
2
Département de Neurosciences, Faculté de Médecine, Université de Montréal; Hôpital du Sacré-Coeur de Montréal (CIUSS-NIM), Montréal; Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Montréal, Québec, Canada.

Abstract

Spinal cord injury is associated with chronic sensorimotor deficits due to the interruption of ascending and descending tracts between the brain and spinal cord. Functional recovery after anatomically complete spinal cord injury is limited due to the lack of long-distance axonal regeneration of severed fibers in the adult central nervous system. Most spinal cord injuries in humans, however, are anatomically incomplete. Although restorative treatment options for spinal cord injury remain currently limited, research from experimental models of spinal cord injury have revealed a tremendous capability for both spontaneous and treatment-induced plasticity of the corticospinal system that supports functional recovery. We review recent advances in the understanding of corticospinal circuit plasticity after spinal cord injury and concentrate mainly on the hindlimb motor cortex, its corticospinal projections, and the role of spinal mechanisms that support locomotor recovery. First, we discuss plasticity that occurs at the level of motor cortex and the reorganization of cortical movement representations. Next, we explore downstream plasticity in corticospinal projections. We then review the role of spinal mechanisms in locomotor recovery. We conclude with a perspective on harnessing neuroplasticity with therapeutic interventions to promote functional recovery.

KEYWORDS:

animal models; corticospinal tract; forelimb; functional recovery; hindlimb; locomotion; motor cortex; motor map; neuroplasticity; spinal cord injury

PMID:
31397332
DOI:
10.4103/1673-5374.262572
Free full text

Supplemental Content

Full text links

Icon for Medknow Publications and Media Pvt Ltd
Loading ...
Support Center