Send to

Choose Destination
See comment in PubMed Commons below
Nature. 1988 Sep 29;335(6189):457-8.

Phosphonate biosynthesis: isolation of the enzyme responsible for the formation of a carbon-phosphorus bond.

Author information

  • 1Department of Chemistry, Harvard University, Cambridge, Massachusetts 02138.


The first isolation of a naturally occurring phosphonate in 1959 led rapidly to the discovery of a variety of metabolites containing a phosphorus-carbon bond. Phosphonates have been found in bacteria, fungi, and higher organisms such as the snail schistosome vector Biomphalaria. The biosynthetic path to the P-C bond has, however, remained undefined. Thus although it was shown twenty years ago that the isotope label from [14C]glucose or from [32P]phosphoenolpyruvate is incorporated into 2-aminoethylphosphonate by the protozoan Tetrahymena pyriformis, the presumed stoichiometric transformation of phosphoenolpyruvate to phosphonopyruvate has never been demonstrated. Low conversions of phosphoenolpyruvate into 2-aminoethylphosphonate and the trapping of phosphonopyruvate from phosphoenolpyruvate have been reported, but these reactions have not proved reproducible, and the existence of the critical enzyme, phosphoenolpyruvate phosphonomutase, has remained notional. We now report experiments that resolve this enigma, and describe the isolation and characterization of the pure mutase from T. pyriformis.

[PubMed - indexed for MEDLINE]
PubMed Commons home

PubMed Commons

How to join PubMed Commons

    Supplemental Content

    Full text links

    Icon for Nature Publishing Group
    Loading ...
    Support Center