Carbon nanotubes-based PdM bimetallic catalysts through N4-system for efficient ethanol oxidation and hydrogen evolution reaction

Sci Rep. 2019 Jul 30;9(1):11051. doi: 10.1038/s41598-019-47575-w.

Abstract

Transitional metal-nitrogen-carbon system is a promising candidate to replace the Pt-based electrocatalyst due to its superior activity, durability and cost effectiveness. In this study, we have designed a simple strategy to fabricate carbon nanotubes-supported binary-nitrogen-carbon catalyst via wet-chemical method. Palladium and transitional metals (M, i.e. manganese cobalt and copper) nanoparticles are anchored through four-nitrogen system onto carbon nanotubes (denoted as PdM-N4/CNTs). This material has been used as bifunctional electrocatalyst for electrochemical ethanol oxidation reaction and hydrogen evolution reaction for the first time. The N4-linked nanoparticles onto carbon nanotubes plays a crucial role in intrinsic catalytic activity for both reactions in 1 M KOH electrolyte. Among three PdM-N4/CNTs catalysts, the PdMn-N4/CNTs catalyst exhibits higher catalytic activity in terms of current density, mass activity and stability compared to the benchmark Pt/C. The robust electrocatalysis are inherited from the better attachment of PdMn through N4-system onto carbon nanotubes, comparatively smaller particles formation with better dispersion and higher electrical conductivity.