Format

Send to

Choose Destination
Dev Genet. 1988;9(2):91-120.

Multiplicity of functions for the otu gene products during Drosophila oogenesis.

Author information

1
Department of Biochemistry, Molecular Biology and Cell Biology, Northwestern University, Evanston, Illinois 60208.

Abstract

The ovarian tumor gene behaves as if it encodes a product (OGP), which is required during several early steps in the transformation of oogonia into functional oocytes. Seventeen ethyl methane sulfonate-induced mutations have been studied, and their mutant phenotypes can be explained as graded responses by individual germ cells to different levels of OGP synthesized by the mutant germ cells themselves. The lowest and highest levels of OGP appear to be produced by otu10 and otu14, respectively. The 15 mutants with intermediate OGP levels are temperature sensitive; subnormal temperatures improve ovarian development, while above-normal temperatures suppress it. A subgroup of these mutants are unable to form a system of actin microfilament bundles in the cortical cytoplasm of their nurse cells during stage 10B, and these defective nurse cells are unable to transport their cytoplasm to the oocyte, as normally happens between stages 10B and 12. In addition to its role in the actin-mediated transport of nurse cell cytoplasm, OGP also appears to alter the morphology of giant polytene chromosomes, which form as the nurse cells undergo endocycles of DNA replication. Genetic evidence suggests that otu also encodes a second product (SP) that is utilized late in oogenesis. SP is required for the synthesis in the ooplasm of glycogen-rich, beta yolk spheres. Products of the otu gene also play a vital but unknown role in embryogenesis.

PMID:
3133148
DOI:
10.1002/dvg.1020090203
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center