Format

Send to

Choose Destination
Psychiatry Res Neuroimaging. 2019 Sep 30;291:1-8. doi: 10.1016/j.pscychresns.2019.07.003. Epub 2019 Jul 12.

Striatal morphology and neurocognitive dysfunction in Huntington disease: The IMAGE-HD study.

Author information

1
Academic Unit of Psychiatry and Addiction Medicine, the Australian National University Medical School, Canberra Hospital, Yamba Drive, Garran, ACT 2605, Australia. Electronic address: u4314249@anu.edu.au.
2
Imaging Genetics Center, Department of Neurology, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, 4676 Admiralty Way, Ste. 200, Health Sciences Campus, Marina del Rey, CA, USA.
3
Imaging Genetics Center, Department of Neurology, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, 4676 Admiralty Way, Ste. 200, Health Sciences Campus, Marina del Rey, CA, USA; Department of Biomedical Engineering, Illinois Institute of Technology, 3255 South Dearborn St., Wishnick Hall, Suite 314, Chicago, IL 60616, USA.
4
Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Level 3 Alan Gilbert Building, 161 Barry St., Calton, VIC 3053, Australia; Neuropsychiatry Unit, Level 2, John Cade Building, Royal Melbourne Hospital, VIC 3050, Australia; Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia.
5
Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Level 3 Alan Gilbert Building, 161 Barry St., Calton, VIC 3053, Australia; Neuropsychiatry Unit, Level 2, John Cade Building, Royal Melbourne Hospital, VIC 3050, Australia.
6
School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, 18 Innovation Walk, Clayton Campus, Wellington Road, Monash University, VIC 3800, Australia.
7
Department of Psychiatry, School of Clinical Sciences, Monash University, Monash Medical Centre, Block P, Level 3 246 Clayton Road, Clayton, VIC 3168, Australia.
8
School of Psychological Sciences and Monash Institute of Cognitive and Clinical Neurosciences, 18 Innovation Walk, Clayton Campus, Wellington Road, Monash University, VIC 3800, Australia; Monash Biomedical Imaging, 770 Blackburn Road, Building 220, Monash University, Clayton, VIC 3800, Australia.
9
Imaging Genetics Center, Department of Neurology, Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, 4676 Admiralty Way, Ste. 200, Health Sciences Campus, Marina del Rey, CA, USA; Departments of Neurology, Psychiatry, Radiology, Engineering, Pediatrics and Ophthalmology, University of Southern California, CA, USA.
10
Academic Unit of Psychiatry and Addiction Medicine, the Australian National University Medical School, Canberra Hospital, Yamba Drive, Garran, ACT 2605, Australia; Melbourne Neuropsychiatry Centre, Royal Melbourne Hospital and University of Melbourne, Level 3 Alan Gilbert Building, 161 Barry St., Calton, VIC 3053, Australia.

Abstract

We aimed to investigate the relationship between striatal morphology in Huntington disease (HD) and measures of motor and cognitive dysfunction. MRI scans, from the IMAGE-HD study, were obtained from 36 individuals with pre-symptomatic HD (pre-HD), 37 with early symptomatic HD (symp-HD), and 36 healthy matched controls. The neostriatum was manually segmented and a surface-based parametric mapping protocol derived two pointwise shape measures: thickness and surface dilation ratio. Significant shape differences were detected between all groups. Negative associations were detected between lower thickness and surface area shape measure and CAG repeats, disease burden score, and UHDRS total motor score. In symp-HD, UPSIT scores were correlated with higher thickness in left caudate tail and surface dilation ratio in left posterior putamen; Stroop scores were positively correlated with the thickness of left putamen head and body. Self-paced tapping (slow) was correlated with higher thickness and surface dilation ratio in the right caudate in symp-HD and with bilateral putamen in pre-HD. Self-paced tapping (fast) was correlated with higher surface dilation ratio in the right anterior putamen in symp-HD. Shape changes correlated with functional measures subserved by corticostriatal circuits, suggesting that the neostriatum is a potentially useful structural basis for characterisation of endophenotypes of HD.

KEYWORDS:

Biomarker Huntington disease; Endophenotype; Neostriatum

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center