Format

Send to

Choose Destination
J Dairy Sci. 2019 Sep;102(9):8059-8073. doi: 10.3168/jds.2019-16339. Epub 2019 Jul 17.

Exogenous fibrolytic enzymes and recombinant bacterial expansins synergistically improve hydrolysis and in vitro digestibility of bermudagrass haylage.

Author information

1
Department of Animal Sciences, University of Florida, Gainesville 32611.
2
Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville 32603.
3
Department of Animal Sciences, University of Florida, Gainesville 32611; Division of Food and Animal Science, Kentucky State University, Frankfort 40601.
4
Institute of Agriculture and Environmental Sciences, Federal University of Mato Grosso, Campus Sinop, Sinop, MT, Brazil, 78890.
5
Department of Animal Sciences, University of Florida, Gainesville 32611. Electronic address: adesogan@ufl.edu.

Abstract

Four experiments were conducted to examine the effects of a recombinant bacterial expansin-like protein (BsEXLX1) from Bacillus subtilis and a commercial exogenous fibrolytic enzyme (EFE) preparation for ruminants on hydrolysis of pure substrates (cellulose and xylan) and in vitro digestibility of bermudagrass haylage (BMH). Recombinant Escherichia coli BL21 strain was used to express BsEXLX1; the protein was purified using an affinity column. In experiment 1, carboxymethylcellulose, Whatman #1 filter paper (General Electric, Boston, MA) and oat-spelt xylan substrates were subjected to 4 treatments (1) sodium citrate buffer (control), (2) BsEXLX1 (162 µg/g of substrate), (3) EFE (2.3 mg/g of substrate), and (4) EFE + BsELX1 in 3 independent runs. Samples were incubated at optimal conditions for both additives (pH 5 and 50°C) or at ruminal (pH 6 and 39°C) or ambient (pH 6 and 25°C) conditions for 24 h and sugar release was measured. In experiment 2, digestibility in vitro of BMH was examined after treatment with the following: (1) control (buffer only), (2) BsEXLX1 (162 µg/g of dry matter), (3) EFE (2.2 mg/g of dry matter), and (4) EFE + BsEXLX1 in 3 independent runs at 39°C for 24 h. Experiment 3 examined effects of EFE and BsEXLX1 on simulated preingestive hydrolysis and profile of released sugars from BMH after samples were suspended in deionized water with sodium azide at 25°C for 24 h in 2 independent runs. In experiment 4, the sequence of the BsEXLX1 purified protein was compared with 447 ruminal bacterial genomes to identify similar proteins from the rumen. In experiment 1, compared with EFE alone, EFE and BsEXLX1 synergistically increased sugar release from carboxymethylcellulose and Whatman #1 filter paper under all simulated conditions; however, hydrolysis of xylan was not improved. In experiment 2, compared with EFE alone, treatment with EFE and BsEXLX1 increased neutral detergent fiber and acid detergent fiber digestibility of bermudagrass haylage (by 5.5 and 15%, respectively) and total volatile fatty acid concentrations, and decreased acetate-propionate ratio. In experiment 3, compared with EFE alone. The EFE and BsEXLX1 synergistically reduced concentrations of neutral detergent fiber and acid detergent fiber and increased release of sugars by 9.3%, particularly cellobiose (72.5%). In experiment 4, a similar sequence to that of BsEXLX1 was identified in Bacillus licheniformis, and similar hypothetical protein sequences were identified in Ruminococcus flavefaciens strains along with different protein structures in E. xylanophilum and Lachnospiraceae. This study showed that an expansin-like protein synergistically increased the hydrolysis of pure cellulose substrates and the hydrolysis and digestibility in vitro of BMH.

KEYWORDS:

Bacillus subtilis; bermudagrass; expansin-like protein; fibrolytic enzyme

PMID:
31326164
DOI:
10.3168/jds.2019-16339

Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center