Format

Send to

Choose Destination
Front Immunol. 2019 Jun 28;10:1347. doi: 10.3389/fimmu.2019.01347. eCollection 2019.

Iron-Dependent Trafficking of 5-Lipoxygenase and Impact on Human Macrophage Activation.

Author information

1
Faculty of Bioscience and Technology for Food Agriculture and Environment, University of Teramo, Teramo, Italy.
2
Faculty of Veterinary Medicine, University of Teramo, Teramo, Italy.
3
European Center for Brain Research (CERC)/IRCCS Santa Lucia Foundation, Rome, Italy.
4
Institute of Pharmaceutical Chemistry, Goethe-University Frankfurt, Frankfurt, Germany.
5
Department of Medicine, Campus Bio-Medico University of Rome, Rome, Italy.

Abstract

5-lipoxygenase (5-LOX) is a non-heme iron-containing dioxygenase expressed in immune cells that catalyzes the two initial steps in the biosynthesis of leukotrienes. It is well known that 5-LOX activation in innate immunity cells is related to different iron-associated pro-inflammatory disorders, including cancer, neurodegenerative diseases, and atherosclerosis. However, the molecular and cellular mechanism(s) underlying the interplay between iron and 5-LOX activation are largely unexplored. In this study, we investigated whether iron (in the form of Fe3+ and hemin) might modulate 5-LOX influencing its membrane binding, subcellular distribution, and functional activity. We proved by fluorescence resonance energy transfer approach that metal removal from the recombinant human 5-LOX, not only altered the catalytic activity of the enzyme, but also impaired its membrane-binding. To ascertain whether iron can modulate the subcellular distribution of 5-LOX in immune cells, we exposed THP-1 macrophages and human primary macrophages to exogenous iron. Cells exposed to increasing amounts of Fe3+ showed a redistribution (ranging from ~45 to 75%) of the cytosolic 5-LOX to the nuclear fraction. Accordingly, confocal microscopy revealed that acute exposure to extracellular Fe3+, as well as hemin, caused an overt increase in the nuclear fluorescence of 5-LOX, accompanied by a co-localization with the 5-LOX activating protein (FLAP) both in THP-1 macrophages and human macrophages. The functional relevance of iron overloading was demonstrated by a marked induction of the expression of interleukin-6 in iron-treated macrophages. Importantly, pre-treatment of cells with the iron-chelating agent deferoxamine completely abolished the hemin-dependent translocation of 5-LOX to the nuclear fraction, and significantly reverted its effect on interleukin-6 overexpression. These results suggest that exogenous iron modulates the biological activity of 5-LOX in macrophages by increasing its ability to bind to nuclear membranes, further supporting a role for iron in inflammation-based diseases where its homeostasis is altered and suggesting further evidence of risks related to iron overload.

KEYWORDS:

5-lipoxygenase; enzyme activation; iron; macrophage activation; macrophages; nuclear translocation

Supplemental Content

Full text links

Icon for Frontiers Media SA Icon for PubMed Central
Loading ...
Support Center