Format

Send to

Choose Destination
Oncol Lett. 2019 Jul;18(1):189-196. doi: 10.3892/ol.2019.10288. Epub 2019 Apr 30.

Ampelopsin-sodium induces apoptosis in human lung adenocarcinoma cell lines by promoting tubulin polymerization in vitro.

Author information

1
Department of Pharmacology, School of Basic Medical Science, Lanzhou University, Lanzhou, Gansu 730000, P.R. China.
2
Department of Pharmacology, College of Pharmacy, Gansu University of Traditional Chinese Medicine, Lanzhou, Gansu 730000, P.R. China.
3
Department of Drug Policy and Essential Medicine, Xi'an Municipal Health Commission, Xi'an, Shaanxi 710000, P.R. China.

Abstract

Previous studies have demonstrated that ampelopsin (AMP), a type of flavonoid isolated from the stems and leaves of Ampelopsis grossedentata, exhibits anti-cancer activity in various types of cancer. Conversion of AMP into its sodium salt (AMP-Na) conferred enhanced solubility and stability to it. The present study aimed to evaluate the anti-cancer activity of AMP-Na in human lung adenocarcinoma cell lines and to investigate its mechanisms of action. Cell proliferation and viability were assessed by MTT and colony formation assays, and cell migration was determined using a scratch wound healing assay. The cell cycle distribution, apoptosis rate and tubulin immunofluorescence intensity were analyzed using flow cytometry, the cell ultra-microstructure was examined using transmission electron microscopy and the accumulation of tubulin was determined using laser confocal microscopy. The results demonstrated that AMP-Na significantly inhibited the proliferation, clonogenicity and migration of human lung adenocarcinoma cells. Furthermore, AMP-Na induced SPC-A-1 cell apoptosis, and promoted tubulin polymerization. The results suggested that the underlying mechanisms of AMP-Na may involve targeting of microtubules and tubulin polymerization to subsequently disrupt mitosis and induce cell cycle arrest at the S-phase.

KEYWORDS:

ampelopsin sodium; anti-tumor; apoptosis; human lung adenocarcinoma cell lines; tubulin polymerization

Supplemental Content

Full text links

Icon for PubMed Central
Loading ...
Support Center