Send to

Choose Destination
J Am Chem Soc. 2019 Jul 17;141(28):11009-11018. doi: 10.1021/jacs.8b13493. Epub 2019 Jul 3.

A Responsive Magnetic Resonance Imaging Contrast Agent for Detection of Excess Copper(II) in the Liver In Vivo.

Author information

Department of Chemistry and Biochemistry , University of Texas at Dallas , Richardson , Texas , United States.
Advanced Imaging Research Center , University of Texas Southwestern Medical Center , Dallas , Texas , United States.


The design, synthesis, and properties of a new gadolinium-based copper-responsive magnetic resonance imaging (MRI) contrast agent is presented. The sensor (GdL1) has high selectivity for copper ions and exhibits a 43% increase in r1 relaxivity (20 MHz) upon binding to 1 equiv of Cu2+ in aqueous buffer. Interestingly, in the presence of physiological levels of human serum albumin (HSA), the r1 relaxivity is amplified further up to 270%. Additional spectroscopic and X-ray absorption spectroscopy (XAS) studies show that Cu2+ is coordinated by two carboxylic acid groups and the single amine group on an appended side chain of GdL1 and forms a ternary complex with HSA (GdL1-Cu2+-HSA). T1-weighted in vivo imaging demonstrates that GdL1 can detect basal, endogenous labile copper(II) ions in living mice. This offers a unique opportunity to explore the role of copper ions in the development and progression of neurological diseases such as Wilson's disease.


Supplemental Content

Full text links

Icon for American Chemical Society
Loading ...
Support Center