Send to

Choose Destination
Chem Biol Interact. 2019 Jun 27;310:108728. doi: 10.1016/j.cbi.2019.108728. [Epub ahead of print]

Promotion of mitochondrial protection by naringenin in methylglyoxal-treated SH-SY5Y cells: Involvement of the Nrf2/GSH axis.

Author information

Grupo de Estudos em Neuroquímica e Neurobiologia de Moléculas Bioativas, Universidade Federal de Mato Grosso (UFMT), Av. Fernando Corrêa da Costa, 2367, CEP 78060-900, Cuiaba, MT, Brazil; Programa de Pós-Graduação em Química (PPGQ), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil; Programa de Pós-Graduação em Ciências da Saúde (PPGCS), Universidade Federal de Mato Grosso (UFMT), Cuiaba, MT, Brazil. Electronic address:
Programa de Pós-Graduação em Bioquímica e Bioprospecção (PPGBBIO), Centro de Ciências Químicas, Farmacêuticas e de Alimentos (CCQFA), Instituto de Biologia, Universidade Federal de Pelotas (UFPel), Pelotas, RS, Brazil.
Instituto de Biotecnologia (IBTEC), Universidade Federal de Uberlândia (UFU), Patos de Minas, MG, Brazil.


Disruption of the mitochondrial function has been associated with redox impairment and triggering of cell death in nucleated human cells, as observed in several diseases. The administration of chemicals that would prevent mitochondrial dysfunction is an attractive strategy in cases of neurodegeneration, cardiovascular diseases, and metabolic disorders. Methylglyoxal (MG) is a dicarbonyl compound that exhibits an important role as a mitochondrial toxicant in neurodegenerative diseases (such as Alzheimer's disease and Parkinson's disease) and diabetes mellitus. On the other hand, naringenin (NGN; C15H12O5) is a natural antioxidant that also presents anti-inflammatory effects in mammalian cells. In this context, we have evaluated whether and how NGN would be able to prevent the mitochondria-related bioenergetics and redox dysfunctions induced by MG in the human neuroblastoma SH-SY5Y cells. The cells were pretreated (for 2 h) with NGN (at 10-80 μM) and then challenged with MG at 500 μM for 24 h. NGN significantly attenuated the effects of MG on the mitochondrial function and redox environment in this experimental model. Moreover, NGN prevented the MG-triggered mitochondria-related cell death in SH-SY5Y cells. Nonetheless, the inhibition of the synthesis of glutathione (GSH, a major non-enzymatic antioxidant) suppressed the promotion of mitochondrial protection by NGN in MG-treated cells. We also found that the synthesis of GSH was induced by NGN through a mechanism associated with the transcription factor nuclear factor (erythroid-derived 2)-like 2 (Nrf2). Therefore, NGN caused mitochondrial protection by an Nrf2/GSH-dependent manner in SH-SY5Y cells exposed to MG.


Glutathione; Methylglyoxal; Mitochondrial protection; Naringenin; Nrf2


Supplemental Content

Full text links

Icon for Elsevier Science
Loading ...
Support Center