RBFNN-Based Data-Driven Predictive Iterative Learning Control for Nonaffine Nonlinear Systems

IEEE Trans Neural Netw Learn Syst. 2020 Apr;31(4):1170-1182. doi: 10.1109/TNNLS.2019.2919441. Epub 2019 Jun 25.

Abstract

In this paper, a novel data-driven predictive iterative learning control (DDPILC) scheme based on a radial basis function neural network (RBFNN) is proposed for a class of repeatable nonaffine nonlinear discrete-time systems subjected to nonrepetitive external disturbances. First, by utilizing the dynamic linearization technique (DLT) with a newly introduced and unknown system parameter pseudopartial derivative (PPD) and designing a new RBFNN estimation algorithm along the iterative learning axis for addressing the unknown PPD and the unknown nonrepetitive external disturbances, a data-driven prediction model is established. It is theoretically shown that by constructing a composite energy function (CEF) with respect to the modeling error for the first time, the convergence of the modeling error via the proposed DLT-based RBFNN modeling method can be guaranteed, and the convergence speed is tunable. Then, a DDPILC with a disturbance compensation term is designed, and the convergence of the tracking control error is analyzed. Finally, simulations of a train operation system reveal that even if the train suffers from randomly varying load disturbances and nonlinear running resistance, the proposed scheme can make both the modeling error and the tracking control error decrease successively with increasing operation number.