Format

Send to

Choose Destination
Teratology. 1987 Dec;36(3):329-34.

Effects of differential alcohol dehydrogenase activity on the developmental toxicity of ethanol in Drosophila melanogaster.

Author information

1
Department of Biology, University of Alabama, Tuscaloosa 35487-1927.

Abstract

The role of alcohol dehydrogenase (ADH) activity in ethanol toxicity was investigated in Drosophila melanogaster. Flies from three congenic Adh strains (high, medium, and low ADH activity) were allowed to deposit eggs on medium containing 0, 4, or 8% ethanol. The resulting larvae were allowed to complete their development in the medium, and emerging flies were examined for defects. Flies with high ADH activity had malformation incidences of 0.8, 2.4, and 5.2% at 0, 4, and 8% ethanol, respectively. The comparable incidences for the low ADH strain were 1.0, 4.1, and 8.4%, while those for the medium ADH strain were intermediate in value. These results indicate that ethanol teratogenesis may be inversely related to ADH activity. When larvae were treated with ethanol for different lengths of time during development, the incidence of defects in flies from the high ADH strain was 3.9% when exposure started at the first instar and 3.09% when exposure started at the third instar. Results of the same exposures for the intermediate ADH strain were 5.2 and 3.4%, respectively, while those for the low ADH strain were 6.9 and 5.5%, respectively. Thus, length of ethanol exposure was directly related to the increased incidence of malformations in all tested Drosophila strains. For all tested strains, defect incidences appeared to be dose-related as well, regardless of length of exposure. ADH in Drosophila has a dual function and thus can catalyze oxidation of both ethanol and its toxic metabolite, acetaldehyde. This suggests that ethanol is the proximate teratogen in Drosophila.

PMID:
3122352
DOI:
10.1002/tera.1420360309
[Indexed for MEDLINE]

Supplemental Content

Loading ...
Support Center