Send to

Choose Destination
Hum Mol Genet. 2019 Jul 1;28(13):2255-2270. doi: 10.1093/hmg/ddz050.

Altered keratinocyte differentiation is an early driver of keratin mutation-based palmoplantar keratoderma.

Author information

Department of Biochemistry and Molecular Biology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA.
Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
Department of Physiology, School of Medicine, Johns Hopkins University, Baltimore, MD, USA.


The type I intermediate filament keratin 16 (KRT16 gene; K16 protein) is constitutively expressed in ectoderm-derived appendages and in palmar/plantar epidermis and is robustly induced when the epidermis experiences chemical, mechanical or environmental stress. Missense mutations at the KRT16 locus can cause pachyonychia congenita (PC, OMIM:167200) or focal non-epidermolytic palmoplantar keratoderma (FNEPPK, OMIM:613000), which each entail painful calluses on palmar and plantar skin. Krt16-null mice develop footpad lesions that mimic PC-associated PPK, providing an opportunity to decipher its pathophysiology, and develop therapies. We report on insight gained from a genome-wide analysis of gene expression in PPK-like lesions of Krt16-null mice. Comparison of this data set with publicly available microarray data of PPK lesions from individuals with PC revealed significant synergies in gene expression profiles. Keratin 9 (Krt9/K9), the most robustly expressed gene in differentiating volar keratinocytes, is markedly downregulated in Krt16-null paw skin, well-ahead of lesion onset, and is paralleled by pleiotropic defects in terminal differentiation. Effective prevention of PPK-like lesions in Krt16-null paw skin (via topical delivery of the Nrf2 inducer sulforaphane) involves the stimulation of Krt9 expression. These findings highlight a role for defective terminal differentiation and loss of Krt9/K9 expression as additional drivers of PC-associated PPK and highlight restoration of KRT9 expression as a worthy target for therapy. Further, we report on the novel observation that keratin 16 can localize to the nucleus of epithelial cells, implying a potential nuclear function that may be relevant to PC and FNEPPK.

[Available on 2020-07-01]

Supplemental Content

Full text links

Icon for Silverchair Information Systems
Loading ...
Support Center