Format

Send to

Choose Destination
AJNR Am J Neuroradiol. 2019 Jul;40(7):1095-1105. doi: 10.3174/ajnr.A6088. Epub 2019 Jun 13.

3T MRI Whole-Brain Microscopy Discrimination of Subcortical Anatomy, Part 2: Basal Forebrain.

Author information

1
From the Department of Radiology and Imaging Sciences, (M.J.H.), Emory University, Atlanta, Georgia.
2
Departments of Radiology (M.T.B., N.C., T.M.S.).
3
Pathology (A.F., T.W.).
4
Neurosurgery (A.Y.M.).
5
Neurology (L.C., T.W., O.D.).
6
SUDC Foundation (L.C., O.D.), New York, New York.
7
Psychiatry (T.W.), New York University, New York, New York.
8
Departments of Radiology (M.T.B., N.C., T.M.S.) timothy.shepherd@nyumc.org.
9
Center for Advanced Imaging Innovation and Research (T.M.S.), New York, New York.

Abstract

BACKGROUND AND PURPOSE:

The basal forebrain contains multiple structures of great interest to emerging functional neurosurgery applications, yet many neuroradiologists are unfamiliar with this neuroanatomy because it is not resolved with current clinical MR imaging.

MATERIALS AND METHODS:

We applied an optimized TSE T2 sequence to washed whole postmortem brain samples (n = 13) to demonstrate and characterize the detailed anatomy of the basal forebrain using a clinical 3T MR imaging scanner. We measured the size of selected internal myelinated pathways and measured subthalamic nucleus size, oblique orientation, and position relative to the intercommissural point.

RESULTS:

We identified most basal ganglia and diencephalon structures using serial axial, coronal, and sagittal planes relative to the intercommissural plane. Specific oblique image orientations demonstrated the positions and anatomic relationships for selected structures of interest to functional neurosurgery. We observed only 0.2- to 0.3-mm right-left differences in the anteroposterior and superoinferior length of the subthalamic nucleus (P = .084 and .047, respectively). Individual variability for the subthalamic nucleus was greatest for angulation within the sagittal plane (range, 15°-37°), transverse dimension (range, 2-6.7 mm), and most inferior border (range, 4-7 mm below the intercommissural plane).

CONCLUSIONS:

Direct identification of basal forebrain structures in multiple planes using the TSE T2 sequence makes this challenging neuroanatomy more accessible to practicing neuroradiologists. This protocol can be used to better define individual variations relevant to functional neurosurgical targeting and validate/complement advanced MR imaging methods being developed for direct visualization of these structures in living patients.

PMID:
31196861
DOI:
10.3174/ajnr.A6088

Supplemental Content

Full text links

Icon for HighWire Icon for NYU School of Medicine
Loading ...
Support Center